[4417] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[4417] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Windows.Forms;
|
---|
| 26 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
[13003] | 27 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
[12493] | 28 | using HeuristicLab.Common;
|
---|
[4417] | 29 | using HeuristicLab.MainForm;
|
---|
[13003] | 30 | using HeuristicLab.Optimization;
|
---|
[17976] | 31 | using HeuristicLab.PluginInfrastructure;
|
---|
[7701] | 32 |
|
---|
[5829] | 33 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
[6642] | 34 | [View("Error Characteristics Curve")]
|
---|
| 35 | [Content(typeof(IRegressionSolution))]
|
---|
| 36 | public partial class RegressionSolutionErrorCharacteristicsCurveView : DataAnalysisSolutionEvaluationView {
|
---|
| 37 | protected const string TrainingSamples = "Training";
|
---|
| 38 | protected const string TestSamples = "Test";
|
---|
| 39 | protected const string AllSamples = "All Samples";
|
---|
[4417] | 40 |
|
---|
[6642] | 41 | public RegressionSolutionErrorCharacteristicsCurveView()
|
---|
| 42 | : base() {
|
---|
[4417] | 43 | InitializeComponent();
|
---|
| 44 |
|
---|
| 45 | cmbSamples.Items.Add(TrainingSamples);
|
---|
| 46 | cmbSamples.Items.Add(TestSamples);
|
---|
[6642] | 47 | cmbSamples.Items.Add(AllSamples);
|
---|
| 48 |
|
---|
[4417] | 49 | cmbSamples.SelectedIndex = 0;
|
---|
| 50 |
|
---|
[12493] | 51 | residualComboBox.SelectedIndex = 0;
|
---|
| 52 |
|
---|
[4651] | 53 | chart.CustomizeAllChartAreas();
|
---|
[12493] | 54 | chart.ChartAreas[0].AxisX.Title = residualComboBox.SelectedItem.ToString();
|
---|
[4417] | 55 | chart.ChartAreas[0].AxisX.Minimum = 0.0;
|
---|
[12365] | 56 | chart.ChartAreas[0].AxisX.Maximum = 0.0;
|
---|
[6642] | 57 | chart.ChartAreas[0].AxisX.IntervalAutoMode = IntervalAutoMode.VariableCount;
|
---|
| 58 | chart.ChartAreas[0].CursorX.Interval = 0.01;
|
---|
| 59 |
|
---|
[10500] | 60 | chart.ChartAreas[0].AxisY.Title = "Ratio of Residuals";
|
---|
[4417] | 61 | chart.ChartAreas[0].AxisY.Minimum = 0.0;
|
---|
| 62 | chart.ChartAreas[0].AxisY.Maximum = 1.0;
|
---|
| 63 | chart.ChartAreas[0].AxisY.MajorGrid.Interval = 0.2;
|
---|
[6642] | 64 | chart.ChartAreas[0].CursorY.Interval = 0.01;
|
---|
[4417] | 65 | }
|
---|
| 66 |
|
---|
[13003] | 67 | // the view holds one regression solution as content but also contains several other regression solutions for comparison
|
---|
| 68 | // the following invariants must hold
|
---|
| 69 | // (Solutions.IsEmpty && Content == null) ||
|
---|
| 70 | // (Solutions[0] == Content && Solutions.All(s => s.ProblemData.TargetVariable == Content.TargetVariable))
|
---|
| 71 |
|
---|
[6642] | 72 | public new IRegressionSolution Content {
|
---|
| 73 | get { return (IRegressionSolution)base.Content; }
|
---|
[4417] | 74 | set { base.Content = value; }
|
---|
| 75 | }
|
---|
[13003] | 76 |
|
---|
[17976] | 77 | private readonly List<IRegressionSolution> solutions = new List<IRegressionSolution>();
|
---|
[13003] | 78 | public IEnumerable<IRegressionSolution> Solutions {
|
---|
| 79 | get { return solutions.AsEnumerable(); }
|
---|
| 80 | }
|
---|
| 81 |
|
---|
[6642] | 82 | public IRegressionProblemData ProblemData {
|
---|
| 83 | get {
|
---|
| 84 | if (Content == null) return null;
|
---|
| 85 | return Content.ProblemData;
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
[4417] | 88 |
|
---|
| 89 | protected override void RegisterContentEvents() {
|
---|
| 90 | base.RegisterContentEvents();
|
---|
[5664] | 91 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
[4417] | 92 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
| 93 | }
|
---|
| 94 | protected override void DeregisterContentEvents() {
|
---|
| 95 | base.DeregisterContentEvents();
|
---|
[5664] | 96 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
[4417] | 97 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[6642] | 100 | protected virtual void Content_ModelChanged(object sender, EventArgs e) {
|
---|
| 101 | if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ModelChanged, sender, e);
|
---|
[13003] | 102 | else {
|
---|
| 103 | // recalculate baseline solutions (for symbolic regression models the features used in the model might have changed)
|
---|
[17976] | 104 | solutions.Clear();
|
---|
[13003] | 105 | solutions.Add(Content); // re-add the first solution
|
---|
[18020] | 106 | solutions.AddRange(CreateBaselineSolutions());
|
---|
[13003] | 107 | UpdateChart();
|
---|
| 108 | }
|
---|
[4417] | 109 | }
|
---|
[6642] | 110 | protected virtual void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
| 111 | if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ProblemDataChanged, sender, e);
|
---|
| 112 | else {
|
---|
[13003] | 113 | // recalculate baseline solutions
|
---|
[17976] | 114 | solutions.Clear();
|
---|
[13003] | 115 | solutions.Add(Content); // re-add the first solution
|
---|
[18020] | 116 | solutions.AddRange(CreateBaselineSolutions());
|
---|
[6642] | 117 | UpdateChart();
|
---|
| 118 | }
|
---|
[4417] | 119 | }
|
---|
| 120 | protected override void OnContentChanged() {
|
---|
| 121 | base.OnContentChanged();
|
---|
[13003] | 122 | // the content object is always stored as the first element in solutions
|
---|
| 123 | solutions.Clear();
|
---|
| 124 | ReadOnly = Content == null;
|
---|
| 125 | if (Content != null) {
|
---|
| 126 | solutions.Add(Content);
|
---|
[18020] | 127 | solutions.AddRange(CreateBaselineSolutions());
|
---|
[13003] | 128 | }
|
---|
[6642] | 129 | UpdateChart();
|
---|
[4417] | 130 | }
|
---|
| 131 |
|
---|
[6642] | 132 | protected virtual void UpdateChart() {
|
---|
| 133 | chart.Series.Clear();
|
---|
| 134 | chart.Annotations.Clear();
|
---|
[12642] | 135 | chart.ChartAreas[0].AxisX.Maximum = 0.0;
|
---|
| 136 | chart.ChartAreas[0].CursorX.Interval = 0.01;
|
---|
[11093] | 137 |
|
---|
[6642] | 138 | if (Content == null) return;
|
---|
[11093] | 139 | if (cmbSamples.SelectedItem.ToString() == TrainingSamples && !ProblemData.TrainingIndices.Any()) return;
|
---|
| 140 | if (cmbSamples.SelectedItem.ToString() == TestSamples && !ProblemData.TestIndices.Any()) return;
|
---|
[4417] | 141 |
|
---|
[13003] | 142 | foreach (var sol in Solutions) {
|
---|
| 143 | AddSeries(sol);
|
---|
[11093] | 144 | }
|
---|
[4417] | 145 |
|
---|
[14255] | 146 | chart.ChartAreas[0].AxisX.Title = string.Format("{0} ({1})", residualComboBox.SelectedItem, Content.ProblemData.TargetVariable);
|
---|
[6642] | 147 | }
|
---|
[4417] | 148 |
|
---|
[13003] | 149 | protected void AddSeries(IRegressionSolution solution) {
|
---|
[6642] | 150 | if (chart.Series.Any(s => s.Name == solution.Name)) return;
|
---|
[4417] | 151 |
|
---|
[6642] | 152 | Series solutionSeries = new Series(solution.Name);
|
---|
| 153 | solutionSeries.Tag = solution;
|
---|
| 154 | solutionSeries.ChartType = SeriesChartType.FastLine;
|
---|
[11093] | 155 | var residuals = GetResiduals(GetOriginalValues(), GetEstimatedValues(solution));
|
---|
[12365] | 156 |
|
---|
| 157 | var maxValue = residuals.Max();
|
---|
[12577] | 158 | if (maxValue >= chart.ChartAreas[0].AxisX.Maximum) {
|
---|
| 159 | double scale = Math.Pow(10, Math.Floor(Math.Log10(maxValue)));
|
---|
| 160 | var maximum = scale * (1 + (int)(maxValue / scale));
|
---|
| 161 | chart.ChartAreas[0].AxisX.Maximum = maximum;
|
---|
| 162 | chart.ChartAreas[0].CursorX.Interval = residuals.Min() / 100;
|
---|
| 163 | }
|
---|
[11093] | 164 |
|
---|
| 165 | UpdateSeries(residuals, solutionSeries);
|
---|
| 166 |
|
---|
[18020] | 167 | solutionSeries.ToolTip = "Area over curve: " + CalculateAreaOverCurve(solutionSeries);
|
---|
[8105] | 168 | solutionSeries.LegendToolTip = "Double-click to open model";
|
---|
[6642] | 169 | chart.Series.Add(solutionSeries);
|
---|
| 170 | }
|
---|
[5417] | 171 |
|
---|
[6642] | 172 | protected void UpdateSeries(List<double> residuals, Series series) {
|
---|
| 173 | series.Points.Clear();
|
---|
| 174 | residuals.Sort();
|
---|
[6982] | 175 | if (!residuals.Any() || residuals.All(double.IsNaN)) return;
|
---|
[4417] | 176 |
|
---|
[6642] | 177 | series.Points.AddXY(0, 0);
|
---|
| 178 | for (int i = 0; i < residuals.Count; i++) {
|
---|
| 179 | var point = new DataPoint();
|
---|
| 180 | if (residuals[i] > chart.ChartAreas[0].AxisX.Maximum) {
|
---|
| 181 | point.XValue = chart.ChartAreas[0].AxisX.Maximum;
|
---|
[6750] | 182 | point.YValues[0] = ((double)i) / residuals.Count;
|
---|
[6642] | 183 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
| 184 | series.Points.Add(point);
|
---|
| 185 | break;
|
---|
| 186 | }
|
---|
[4417] | 187 |
|
---|
[6642] | 188 | point.XValue = residuals[i];
|
---|
[6982] | 189 | point.YValues[0] = ((double)i + 1) / residuals.Count;
|
---|
[6642] | 190 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
| 191 | series.Points.Add(point);
|
---|
| 192 | }
|
---|
[4417] | 193 |
|
---|
[6642] | 194 | if (series.Points.Last().XValue < chart.ChartAreas[0].AxisX.Maximum) {
|
---|
| 195 | var point = new DataPoint();
|
---|
| 196 | point.XValue = chart.ChartAreas[0].AxisX.Maximum;
|
---|
| 197 | point.YValues[0] = 1;
|
---|
| 198 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
| 199 | series.Points.Add(point);
|
---|
| 200 | }
|
---|
| 201 | }
|
---|
[4417] | 202 |
|
---|
[6642] | 203 | protected IEnumerable<double> GetOriginalValues() {
|
---|
| 204 | IEnumerable<double> originalValues;
|
---|
| 205 | switch (cmbSamples.SelectedItem.ToString()) {
|
---|
| 206 | case TrainingSamples:
|
---|
[8139] | 207 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices);
|
---|
[6642] | 208 | break;
|
---|
| 209 | case TestSamples:
|
---|
[8139] | 210 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices);
|
---|
[6642] | 211 | break;
|
---|
| 212 | case AllSamples:
|
---|
[6740] | 213 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable);
|
---|
[6642] | 214 | break;
|
---|
| 215 | default:
|
---|
| 216 | throw new NotSupportedException();
|
---|
| 217 | }
|
---|
| 218 | return originalValues;
|
---|
| 219 | }
|
---|
[4417] | 220 |
|
---|
[6642] | 221 | protected IEnumerable<double> GetEstimatedValues(IRegressionSolution solution) {
|
---|
| 222 | IEnumerable<double> estimatedValues;
|
---|
| 223 | switch (cmbSamples.SelectedItem.ToString()) {
|
---|
| 224 | case TrainingSamples:
|
---|
| 225 | estimatedValues = solution.EstimatedTrainingValues;
|
---|
| 226 | break;
|
---|
| 227 | case TestSamples:
|
---|
| 228 | estimatedValues = solution.EstimatedTestValues;
|
---|
| 229 | break;
|
---|
| 230 | case AllSamples:
|
---|
| 231 | estimatedValues = solution.EstimatedValues;
|
---|
| 232 | break;
|
---|
| 233 | default:
|
---|
| 234 | throw new NotSupportedException();
|
---|
[4417] | 235 | }
|
---|
[6642] | 236 | return estimatedValues;
|
---|
[4417] | 237 | }
|
---|
| 238 |
|
---|
[6642] | 239 | protected virtual List<double> GetResiduals(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues) {
|
---|
[12493] | 240 | switch (residualComboBox.SelectedItem.ToString()) {
|
---|
[17976] | 241 | case "Absolute error":
|
---|
| 242 | return originalValues.Zip(estimatedValues, (x, y) => Math.Abs(x - y))
|
---|
[15810] | 243 | .Where(r => !double.IsNaN(r) && !double.IsInfinity(r)).ToList();
|
---|
[17976] | 244 | case "Squared error":
|
---|
| 245 | return originalValues.Zip(estimatedValues, (x, y) => (x - y) * (x - y))
|
---|
[15810] | 246 | .Where(r => !double.IsNaN(r) && !double.IsInfinity(r)).ToList();
|
---|
[15789] | 247 | case "Relative error":
|
---|
| 248 | return originalValues.Zip(estimatedValues, (x, y) => x.IsAlmost(0.0) ? -1 : Math.Abs((x - y) / x))
|
---|
[15810] | 249 | .Where(r => r > 0 && !double.IsNaN(r) && !double.IsInfinity(r)) // remove entries where the original value is 0
|
---|
| 250 | .ToList();
|
---|
[12577] | 251 | default: throw new NotSupportedException();
|
---|
[12493] | 252 | }
|
---|
[4417] | 253 | }
|
---|
| 254 |
|
---|
[6642] | 255 | private double CalculateAreaOverCurve(Series series) {
|
---|
[6982] | 256 | if (series.Points.Count < 1) return 0;
|
---|
[4417] | 257 |
|
---|
| 258 | double auc = 0.0;
|
---|
| 259 | for (int i = 1; i < series.Points.Count; i++) {
|
---|
| 260 | double width = series.Points[i].XValue - series.Points[i - 1].XValue;
|
---|
[6642] | 261 | double y1 = 1 - series.Points[i - 1].YValues[0];
|
---|
| 262 | double y2 = 1 - series.Points[i].YValues[0];
|
---|
[4417] | 263 |
|
---|
| 264 | auc += (y1 + y2) * width / 2;
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | return auc;
|
---|
| 268 | }
|
---|
| 269 |
|
---|
[6642] | 270 | protected void cmbSamples_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
| 271 | if (InvokeRequired) Invoke((Action<object, EventArgs>)cmbSamples_SelectedIndexChanged, sender, e);
|
---|
| 272 | else UpdateChart();
|
---|
[4417] | 273 | }
|
---|
[7043] | 274 |
|
---|
[7700] | 275 | private void Chart_MouseDoubleClick(object sender, MouseEventArgs e) {
|
---|
[7043] | 276 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
| 277 | if (result.ChartElementType != ChartElementType.LegendItem) return;
|
---|
| 278 |
|
---|
| 279 | MainFormManager.MainForm.ShowContent((IRegressionSolution)result.Series.Tag);
|
---|
| 280 | }
|
---|
| 281 |
|
---|
[13003] | 282 | protected virtual IEnumerable<IRegressionSolution> CreateBaselineSolutions() {
|
---|
[17976] | 283 | var constantSolution = CreateConstantSolution();
|
---|
[18020] | 284 | if (constantSolution != null) yield return constantSolution;
|
---|
[17976] | 285 |
|
---|
| 286 | var linearRegressionSolution = CreateLinearSolution();
|
---|
[18020] | 287 | if (linearRegressionSolution != null) yield return linearRegressionSolution;
|
---|
[13003] | 288 | }
|
---|
| 289 |
|
---|
| 290 | private IRegressionSolution CreateConstantSolution() {
|
---|
[17976] | 291 | if (!ProblemData.TrainingIndices.Any()) return null;
|
---|
| 292 |
|
---|
[8139] | 293 | double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
|
---|
[13992] | 294 | var model = new ConstantModel(averageTrainingTarget, ProblemData.TargetVariable);
|
---|
[13100] | 295 | var solution = model.CreateRegressionSolution(ProblemData);
|
---|
[13003] | 296 | solution.Name = "Baseline (constant)";
|
---|
[7043] | 297 | return solution;
|
---|
| 298 | }
|
---|
[13003] | 299 | private IRegressionSolution CreateLinearSolution() {
|
---|
[17976] | 300 | try {
|
---|
| 301 | var solution = LinearRegression.CreateSolution((IRegressionProblemData)ProblemData.Clone(), out _, out _);
|
---|
| 302 | solution.Name = "Baseline (linear)";
|
---|
| 303 | return solution;
|
---|
| 304 | } catch (NotSupportedException e) {
|
---|
| 305 | ErrorHandling.ShowErrorDialog("Could not create a linear regression solution.", e);
|
---|
| 306 | } catch (ArgumentException e) {
|
---|
| 307 | ErrorHandling.ShowErrorDialog("Could not create a linear regression solution.", e);
|
---|
| 308 | }
|
---|
| 309 | return null;
|
---|
[13003] | 310 | }
|
---|
[7700] | 311 |
|
---|
[7701] | 312 | private void chart_MouseMove(object sender, MouseEventArgs e) {
|
---|
| 313 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
[8102] | 314 | if (result.ChartElementType == ChartElementType.LegendItem) {
|
---|
[7701] | 315 | Cursor = Cursors.Hand;
|
---|
[8102] | 316 | } else {
|
---|
[7701] | 317 | Cursor = Cursors.Default;
|
---|
[8102] | 318 | }
|
---|
[7700] | 319 | }
|
---|
[12493] | 320 |
|
---|
[13002] | 321 | private void chart_DragDrop(object sender, DragEventArgs e) {
|
---|
[13003] | 322 | if (e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) {
|
---|
| 323 |
|
---|
| 324 | var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
|
---|
| 325 | var dataAsRegressionSolution = data as IRegressionSolution;
|
---|
| 326 | var dataAsResult = data as IResult;
|
---|
| 327 |
|
---|
| 328 | if (dataAsRegressionSolution != null) {
|
---|
| 329 | solutions.Add((IRegressionSolution)dataAsRegressionSolution.Clone());
|
---|
| 330 | } else if (dataAsResult != null && dataAsResult.Value is IRegressionSolution) {
|
---|
| 331 | solutions.Add((IRegressionSolution)dataAsResult.Value.Clone());
|
---|
| 332 | }
|
---|
| 333 |
|
---|
| 334 | UpdateChart();
|
---|
[13002] | 335 | }
|
---|
| 336 | }
|
---|
| 337 |
|
---|
| 338 | private void chart_DragEnter(object sender, DragEventArgs e) {
|
---|
[13003] | 339 | e.Effect = DragDropEffects.None;
|
---|
| 340 | if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return;
|
---|
| 341 |
|
---|
| 342 | var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
|
---|
| 343 | var dataAsRegressionSolution = data as IRegressionSolution;
|
---|
| 344 | var dataAsResult = data as IResult;
|
---|
| 345 |
|
---|
| 346 | if (!ReadOnly &&
|
---|
| 347 | (dataAsRegressionSolution != null || (dataAsResult != null && dataAsResult.Value is IRegressionSolution))) {
|
---|
| 348 | e.Effect = DragDropEffects.Copy;
|
---|
| 349 | }
|
---|
[13002] | 350 | }
|
---|
| 351 |
|
---|
[12493] | 352 | private void residualComboBox_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
| 353 | UpdateChart();
|
---|
| 354 | }
|
---|
[4417] | 355 | }
|
---|
| 356 | }
|
---|