[4417] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[4417] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Windows.Forms;
|
---|
| 26 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
[13003] | 27 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
[12493] | 28 | using HeuristicLab.Common;
|
---|
[4417] | 29 | using HeuristicLab.MainForm;
|
---|
[13003] | 30 | using HeuristicLab.Optimization;
|
---|
[7701] | 31 |
|
---|
[5829] | 32 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
[6642] | 33 | [View("Error Characteristics Curve")]
|
---|
| 34 | [Content(typeof(IRegressionSolution))]
|
---|
| 35 | public partial class RegressionSolutionErrorCharacteristicsCurveView : DataAnalysisSolutionEvaluationView {
|
---|
| 36 | protected const string TrainingSamples = "Training";
|
---|
| 37 | protected const string TestSamples = "Test";
|
---|
| 38 | protected const string AllSamples = "All Samples";
|
---|
[4417] | 39 |
|
---|
[6642] | 40 | public RegressionSolutionErrorCharacteristicsCurveView()
|
---|
| 41 | : base() {
|
---|
[4417] | 42 | InitializeComponent();
|
---|
| 43 |
|
---|
| 44 | cmbSamples.Items.Add(TrainingSamples);
|
---|
| 45 | cmbSamples.Items.Add(TestSamples);
|
---|
[6642] | 46 | cmbSamples.Items.Add(AllSamples);
|
---|
| 47 |
|
---|
[4417] | 48 | cmbSamples.SelectedIndex = 0;
|
---|
| 49 |
|
---|
[12493] | 50 | residualComboBox.SelectedIndex = 0;
|
---|
| 51 |
|
---|
[4651] | 52 | chart.CustomizeAllChartAreas();
|
---|
[12493] | 53 | chart.ChartAreas[0].AxisX.Title = residualComboBox.SelectedItem.ToString();
|
---|
[4417] | 54 | chart.ChartAreas[0].AxisX.Minimum = 0.0;
|
---|
[12365] | 55 | chart.ChartAreas[0].AxisX.Maximum = 0.0;
|
---|
[6642] | 56 | chart.ChartAreas[0].AxisX.IntervalAutoMode = IntervalAutoMode.VariableCount;
|
---|
| 57 | chart.ChartAreas[0].CursorX.Interval = 0.01;
|
---|
| 58 |
|
---|
[10500] | 59 | chart.ChartAreas[0].AxisY.Title = "Ratio of Residuals";
|
---|
[4417] | 60 | chart.ChartAreas[0].AxisY.Minimum = 0.0;
|
---|
| 61 | chart.ChartAreas[0].AxisY.Maximum = 1.0;
|
---|
| 62 | chart.ChartAreas[0].AxisY.MajorGrid.Interval = 0.2;
|
---|
[6642] | 63 | chart.ChartAreas[0].CursorY.Interval = 0.01;
|
---|
[4417] | 64 | }
|
---|
| 65 |
|
---|
[13003] | 66 | // the view holds one regression solution as content but also contains several other regression solutions for comparison
|
---|
| 67 | // the following invariants must hold
|
---|
| 68 | // (Solutions.IsEmpty && Content == null) ||
|
---|
| 69 | // (Solutions[0] == Content && Solutions.All(s => s.ProblemData.TargetVariable == Content.TargetVariable))
|
---|
| 70 |
|
---|
[6642] | 71 | public new IRegressionSolution Content {
|
---|
| 72 | get { return (IRegressionSolution)base.Content; }
|
---|
[4417] | 73 | set { base.Content = value; }
|
---|
| 74 | }
|
---|
[13003] | 75 |
|
---|
| 76 | private readonly IList<IRegressionSolution> solutions = new List<IRegressionSolution>();
|
---|
| 77 | public IEnumerable<IRegressionSolution> Solutions {
|
---|
| 78 | get { return solutions.AsEnumerable(); }
|
---|
| 79 | }
|
---|
| 80 |
|
---|
[6642] | 81 | public IRegressionProblemData ProblemData {
|
---|
| 82 | get {
|
---|
| 83 | if (Content == null) return null;
|
---|
| 84 | return Content.ProblemData;
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
[4417] | 87 |
|
---|
| 88 | protected override void RegisterContentEvents() {
|
---|
| 89 | base.RegisterContentEvents();
|
---|
[5664] | 90 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
[4417] | 91 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
| 92 | }
|
---|
| 93 | protected override void DeregisterContentEvents() {
|
---|
| 94 | base.DeregisterContentEvents();
|
---|
[5664] | 95 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
[4417] | 96 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
| 97 | }
|
---|
| 98 |
|
---|
[6642] | 99 | protected virtual void Content_ModelChanged(object sender, EventArgs e) {
|
---|
| 100 | if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ModelChanged, sender, e);
|
---|
[13003] | 101 | else {
|
---|
| 102 | // recalculate baseline solutions (for symbolic regression models the features used in the model might have changed)
|
---|
| 103 | solutions.Clear(); // remove all
|
---|
| 104 | solutions.Add(Content); // re-add the first solution
|
---|
| 105 | // and recalculate all other solutions
|
---|
| 106 | foreach (var sol in CreateBaselineSolutions()) {
|
---|
| 107 | solutions.Add(sol);
|
---|
| 108 | }
|
---|
| 109 | UpdateChart();
|
---|
| 110 | }
|
---|
[4417] | 111 | }
|
---|
[6642] | 112 | protected virtual void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
| 113 | if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ProblemDataChanged, sender, e);
|
---|
| 114 | else {
|
---|
[13003] | 115 | // recalculate baseline solutions
|
---|
| 116 | solutions.Clear(); // remove all
|
---|
| 117 | solutions.Add(Content); // re-add the first solution
|
---|
| 118 | // and recalculate all other solutions
|
---|
| 119 | foreach (var sol in CreateBaselineSolutions()) {
|
---|
| 120 | solutions.Add(sol);
|
---|
| 121 | }
|
---|
[6642] | 122 | UpdateChart();
|
---|
| 123 | }
|
---|
[4417] | 124 | }
|
---|
| 125 | protected override void OnContentChanged() {
|
---|
| 126 | base.OnContentChanged();
|
---|
[13003] | 127 | // the content object is always stored as the first element in solutions
|
---|
| 128 | solutions.Clear();
|
---|
| 129 | ReadOnly = Content == null;
|
---|
| 130 | if (Content != null) {
|
---|
| 131 | // recalculate all solutions
|
---|
| 132 | solutions.Add(Content);
|
---|
| 133 | if (ProblemData.TrainingIndices.Any()) {
|
---|
| 134 | foreach (var sol in CreateBaselineSolutions())
|
---|
| 135 | solutions.Add(sol);
|
---|
| 136 | // more solutions can be added by drag&drop
|
---|
| 137 | }
|
---|
| 138 | }
|
---|
[6642] | 139 | UpdateChart();
|
---|
[4417] | 140 | }
|
---|
| 141 |
|
---|
[6642] | 142 | protected virtual void UpdateChart() {
|
---|
| 143 | chart.Series.Clear();
|
---|
| 144 | chart.Annotations.Clear();
|
---|
[12642] | 145 | chart.ChartAreas[0].AxisX.Maximum = 0.0;
|
---|
| 146 | chart.ChartAreas[0].CursorX.Interval = 0.01;
|
---|
[11093] | 147 |
|
---|
[6642] | 148 | if (Content == null) return;
|
---|
[11093] | 149 | if (cmbSamples.SelectedItem.ToString() == TrainingSamples && !ProblemData.TrainingIndices.Any()) return;
|
---|
| 150 | if (cmbSamples.SelectedItem.ToString() == TestSamples && !ProblemData.TestIndices.Any()) return;
|
---|
[4417] | 151 |
|
---|
[13003] | 152 | foreach (var sol in Solutions) {
|
---|
| 153 | AddSeries(sol);
|
---|
[11093] | 154 | }
|
---|
[4417] | 155 |
|
---|
[14255] | 156 | chart.ChartAreas[0].AxisX.Title = string.Format("{0} ({1})", residualComboBox.SelectedItem, Content.ProblemData.TargetVariable);
|
---|
[6642] | 157 | }
|
---|
[4417] | 158 |
|
---|
[13003] | 159 | protected void AddSeries(IRegressionSolution solution) {
|
---|
[6642] | 160 | if (chart.Series.Any(s => s.Name == solution.Name)) return;
|
---|
[4417] | 161 |
|
---|
[6642] | 162 | Series solutionSeries = new Series(solution.Name);
|
---|
| 163 | solutionSeries.Tag = solution;
|
---|
| 164 | solutionSeries.ChartType = SeriesChartType.FastLine;
|
---|
[11093] | 165 | var residuals = GetResiduals(GetOriginalValues(), GetEstimatedValues(solution));
|
---|
[12365] | 166 |
|
---|
| 167 | var maxValue = residuals.Max();
|
---|
[12577] | 168 | if (maxValue >= chart.ChartAreas[0].AxisX.Maximum) {
|
---|
| 169 | double scale = Math.Pow(10, Math.Floor(Math.Log10(maxValue)));
|
---|
| 170 | var maximum = scale * (1 + (int)(maxValue / scale));
|
---|
| 171 | chart.ChartAreas[0].AxisX.Maximum = maximum;
|
---|
| 172 | chart.ChartAreas[0].CursorX.Interval = residuals.Min() / 100;
|
---|
| 173 | }
|
---|
[11093] | 174 |
|
---|
| 175 | UpdateSeries(residuals, solutionSeries);
|
---|
| 176 |
|
---|
[6642] | 177 | solutionSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(solutionSeries);
|
---|
[8105] | 178 | solutionSeries.LegendToolTip = "Double-click to open model";
|
---|
[6642] | 179 | chart.Series.Add(solutionSeries);
|
---|
| 180 | }
|
---|
[5417] | 181 |
|
---|
[6642] | 182 | protected void UpdateSeries(List<double> residuals, Series series) {
|
---|
| 183 | series.Points.Clear();
|
---|
| 184 | residuals.Sort();
|
---|
[6982] | 185 | if (!residuals.Any() || residuals.All(double.IsNaN)) return;
|
---|
[4417] | 186 |
|
---|
[6642] | 187 | series.Points.AddXY(0, 0);
|
---|
| 188 | for (int i = 0; i < residuals.Count; i++) {
|
---|
| 189 | var point = new DataPoint();
|
---|
| 190 | if (residuals[i] > chart.ChartAreas[0].AxisX.Maximum) {
|
---|
| 191 | point.XValue = chart.ChartAreas[0].AxisX.Maximum;
|
---|
[6750] | 192 | point.YValues[0] = ((double)i) / residuals.Count;
|
---|
[6642] | 193 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
| 194 | series.Points.Add(point);
|
---|
| 195 | break;
|
---|
| 196 | }
|
---|
[4417] | 197 |
|
---|
[6642] | 198 | point.XValue = residuals[i];
|
---|
[6982] | 199 | point.YValues[0] = ((double)i + 1) / residuals.Count;
|
---|
[6642] | 200 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
| 201 | series.Points.Add(point);
|
---|
| 202 | }
|
---|
[4417] | 203 |
|
---|
[6642] | 204 | if (series.Points.Last().XValue < chart.ChartAreas[0].AxisX.Maximum) {
|
---|
| 205 | var point = new DataPoint();
|
---|
| 206 | point.XValue = chart.ChartAreas[0].AxisX.Maximum;
|
---|
| 207 | point.YValues[0] = 1;
|
---|
| 208 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
| 209 | series.Points.Add(point);
|
---|
| 210 | }
|
---|
| 211 | }
|
---|
[4417] | 212 |
|
---|
[6642] | 213 | protected IEnumerable<double> GetOriginalValues() {
|
---|
| 214 | IEnumerable<double> originalValues;
|
---|
| 215 | switch (cmbSamples.SelectedItem.ToString()) {
|
---|
| 216 | case TrainingSamples:
|
---|
[8139] | 217 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices);
|
---|
[6642] | 218 | break;
|
---|
| 219 | case TestSamples:
|
---|
[8139] | 220 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices);
|
---|
[6642] | 221 | break;
|
---|
| 222 | case AllSamples:
|
---|
[6740] | 223 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable);
|
---|
[6642] | 224 | break;
|
---|
| 225 | default:
|
---|
| 226 | throw new NotSupportedException();
|
---|
| 227 | }
|
---|
| 228 | return originalValues;
|
---|
| 229 | }
|
---|
[4417] | 230 |
|
---|
[6642] | 231 | protected IEnumerable<double> GetEstimatedValues(IRegressionSolution solution) {
|
---|
| 232 | IEnumerable<double> estimatedValues;
|
---|
| 233 | switch (cmbSamples.SelectedItem.ToString()) {
|
---|
| 234 | case TrainingSamples:
|
---|
| 235 | estimatedValues = solution.EstimatedTrainingValues;
|
---|
| 236 | break;
|
---|
| 237 | case TestSamples:
|
---|
| 238 | estimatedValues = solution.EstimatedTestValues;
|
---|
| 239 | break;
|
---|
| 240 | case AllSamples:
|
---|
| 241 | estimatedValues = solution.EstimatedValues;
|
---|
| 242 | break;
|
---|
| 243 | default:
|
---|
| 244 | throw new NotSupportedException();
|
---|
[4417] | 245 | }
|
---|
[6642] | 246 | return estimatedValues;
|
---|
[4417] | 247 | }
|
---|
| 248 |
|
---|
[6642] | 249 | protected virtual List<double> GetResiduals(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues) {
|
---|
[12493] | 250 | switch (residualComboBox.SelectedItem.ToString()) {
|
---|
[15810] | 251 | case "Absolute error": return originalValues.Zip(estimatedValues, (x, y) => Math.Abs(x - y))
|
---|
| 252 | .Where(r => !double.IsNaN(r) && !double.IsInfinity(r)).ToList();
|
---|
| 253 | case "Squared error": return originalValues.Zip(estimatedValues, (x, y) => (x - y) * (x - y))
|
---|
| 254 | .Where(r => !double.IsNaN(r) && !double.IsInfinity(r)).ToList();
|
---|
[15789] | 255 | case "Relative error":
|
---|
| 256 | return originalValues.Zip(estimatedValues, (x, y) => x.IsAlmost(0.0) ? -1 : Math.Abs((x - y) / x))
|
---|
[15810] | 257 | .Where(r => r > 0 && !double.IsNaN(r) && !double.IsInfinity(r)) // remove entries where the original value is 0
|
---|
| 258 | .ToList();
|
---|
[12577] | 259 | default: throw new NotSupportedException();
|
---|
[12493] | 260 | }
|
---|
[4417] | 261 | }
|
---|
| 262 |
|
---|
[6642] | 263 | private double CalculateAreaOverCurve(Series series) {
|
---|
[6982] | 264 | if (series.Points.Count < 1) return 0;
|
---|
[4417] | 265 |
|
---|
| 266 | double auc = 0.0;
|
---|
| 267 | for (int i = 1; i < series.Points.Count; i++) {
|
---|
| 268 | double width = series.Points[i].XValue - series.Points[i - 1].XValue;
|
---|
[6642] | 269 | double y1 = 1 - series.Points[i - 1].YValues[0];
|
---|
| 270 | double y2 = 1 - series.Points[i].YValues[0];
|
---|
[4417] | 271 |
|
---|
| 272 | auc += (y1 + y2) * width / 2;
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | return auc;
|
---|
| 276 | }
|
---|
| 277 |
|
---|
[6642] | 278 | protected void cmbSamples_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
| 279 | if (InvokeRequired) Invoke((Action<object, EventArgs>)cmbSamples_SelectedIndexChanged, sender, e);
|
---|
| 280 | else UpdateChart();
|
---|
[4417] | 281 | }
|
---|
[7043] | 282 |
|
---|
[7700] | 283 | private void Chart_MouseDoubleClick(object sender, MouseEventArgs e) {
|
---|
[7043] | 284 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
| 285 | if (result.ChartElementType != ChartElementType.LegendItem) return;
|
---|
| 286 |
|
---|
| 287 | MainFormManager.MainForm.ShowContent((IRegressionSolution)result.Series.Tag);
|
---|
| 288 | }
|
---|
| 289 |
|
---|
[13003] | 290 | protected virtual IEnumerable<IRegressionSolution> CreateBaselineSolutions() {
|
---|
| 291 | yield return CreateConstantSolution();
|
---|
| 292 | yield return CreateLinearSolution();
|
---|
| 293 | }
|
---|
| 294 |
|
---|
| 295 | private IRegressionSolution CreateConstantSolution() {
|
---|
[8139] | 296 | double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
|
---|
[13992] | 297 | var model = new ConstantModel(averageTrainingTarget, ProblemData.TargetVariable);
|
---|
[13100] | 298 | var solution = model.CreateRegressionSolution(ProblemData);
|
---|
[13003] | 299 | solution.Name = "Baseline (constant)";
|
---|
[7043] | 300 | return solution;
|
---|
| 301 | }
|
---|
[13003] | 302 | private IRegressionSolution CreateLinearSolution() {
|
---|
| 303 | double rmsError, cvRmsError;
|
---|
| 304 | var solution = LinearRegression.CreateLinearRegressionSolution((IRegressionProblemData)ProblemData.Clone(), out rmsError, out cvRmsError);
|
---|
| 305 | solution.Name = "Baseline (linear)";
|
---|
| 306 | return solution;
|
---|
| 307 | }
|
---|
[7700] | 308 |
|
---|
[7701] | 309 | private void chart_MouseMove(object sender, MouseEventArgs e) {
|
---|
| 310 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
[8102] | 311 | if (result.ChartElementType == ChartElementType.LegendItem) {
|
---|
[7701] | 312 | Cursor = Cursors.Hand;
|
---|
[8102] | 313 | } else {
|
---|
[7701] | 314 | Cursor = Cursors.Default;
|
---|
[8102] | 315 | }
|
---|
[7700] | 316 | }
|
---|
[12493] | 317 |
|
---|
[13002] | 318 | private void chart_DragDrop(object sender, DragEventArgs e) {
|
---|
[13003] | 319 | if (e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) {
|
---|
| 320 |
|
---|
| 321 | var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
|
---|
| 322 | var dataAsRegressionSolution = data as IRegressionSolution;
|
---|
| 323 | var dataAsResult = data as IResult;
|
---|
| 324 |
|
---|
| 325 | if (dataAsRegressionSolution != null) {
|
---|
| 326 | solutions.Add((IRegressionSolution)dataAsRegressionSolution.Clone());
|
---|
| 327 | } else if (dataAsResult != null && dataAsResult.Value is IRegressionSolution) {
|
---|
| 328 | solutions.Add((IRegressionSolution)dataAsResult.Value.Clone());
|
---|
| 329 | }
|
---|
| 330 |
|
---|
| 331 | UpdateChart();
|
---|
[13002] | 332 | }
|
---|
| 333 | }
|
---|
| 334 |
|
---|
| 335 | private void chart_DragEnter(object sender, DragEventArgs e) {
|
---|
[13003] | 336 | e.Effect = DragDropEffects.None;
|
---|
| 337 | if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return;
|
---|
| 338 |
|
---|
| 339 | var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
|
---|
| 340 | var dataAsRegressionSolution = data as IRegressionSolution;
|
---|
| 341 | var dataAsResult = data as IResult;
|
---|
| 342 |
|
---|
| 343 | if (!ReadOnly &&
|
---|
| 344 | (dataAsRegressionSolution != null || (dataAsResult != null && dataAsResult.Value is IRegressionSolution))) {
|
---|
| 345 | e.Effect = DragDropEffects.Copy;
|
---|
| 346 | }
|
---|
[13002] | 347 | }
|
---|
| 348 |
|
---|
[12493] | 349 | private void residualComboBox_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
| 350 | UpdateChart();
|
---|
| 351 | }
|
---|
[4417] | 352 | }
|
---|
| 353 | }
|
---|