[13780] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15583] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[13780] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[14826] | 23 | using System.Collections;
|
---|
[13780] | 24 | using System.Collections.Generic;
|
---|
[13836] | 25 | using System.Drawing;
|
---|
[13817] | 26 | using System.Globalization;
|
---|
[13780] | 27 | using System.Linq;
|
---|
[13840] | 28 | using System.Threading;
|
---|
[13837] | 29 | using System.Threading.Tasks;
|
---|
[13780] | 30 | using System.Windows.Forms;
|
---|
| 31 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
| 32 | using HeuristicLab.Common;
|
---|
[13836] | 33 | using HeuristicLab.MainForm.WindowsForms;
|
---|
[13780] | 34 | using HeuristicLab.Visualization.ChartControlsExtensions;
|
---|
| 35 |
|
---|
| 36 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
[14852] | 37 | public partial class PartialDependencePlot : UserControl, IPartialDependencePlot {
|
---|
[13831] | 38 | private ModifiableDataset sharedFixedVariables; // used for syncronising variable values between charts
|
---|
[13837] | 39 | private ModifiableDataset internalDataset; // holds the x values for each point drawn
|
---|
[13780] | 40 |
|
---|
[13842] | 41 | private CancellationTokenSource cancelCurrentRecalculateSource;
|
---|
[13840] | 42 |
|
---|
[13842] | 43 | private readonly List<IRegressionSolution> solutions;
|
---|
| 44 | private readonly Dictionary<IRegressionSolution, Series> seriesCache;
|
---|
| 45 | private readonly Dictionary<IRegressionSolution, Series> ciSeriesCache;
|
---|
| 46 |
|
---|
[13853] | 47 | private readonly ToolStripMenuItem configToolStripMenuItem;
|
---|
[14852] | 48 | private readonly PartialDependencePlotConfigurationDialog configurationDialog;
|
---|
[13853] | 49 |
|
---|
[13842] | 50 | #region Properties
|
---|
[14014] | 51 | public string XAxisTitle {
|
---|
| 52 | get { return chart.ChartAreas[0].AxisX.Title; }
|
---|
| 53 | set { chart.ChartAreas[0].AxisX.Title = value; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public string YAxisTitle {
|
---|
| 57 | get { return chart.ChartAreas[0].AxisY.Title; }
|
---|
| 58 | set { chart.ChartAreas[0].AxisY.Title = value; }
|
---|
| 59 | }
|
---|
| 60 |
|
---|
[13831] | 61 | public bool ShowLegend {
|
---|
| 62 | get { return chart.Legends[0].Enabled; }
|
---|
| 63 | set { chart.Legends[0].Enabled = value; }
|
---|
[13780] | 64 | }
|
---|
[13831] | 65 | public bool ShowCursor {
|
---|
| 66 | get { return chart.Annotations[0].Visible; }
|
---|
[13853] | 67 | set {
|
---|
| 68 | chart.Annotations[0].Visible = value;
|
---|
[14131] | 69 | if (!value) chart.Titles[0].Text = string.Empty;
|
---|
[13853] | 70 | }
|
---|
[13831] | 71 | }
|
---|
[13780] | 72 |
|
---|
[13855] | 73 | public bool ShowConfigButton {
|
---|
| 74 | get { return configurationButton.Visible; }
|
---|
| 75 | set { configurationButton.Visible = value; }
|
---|
| 76 | }
|
---|
| 77 |
|
---|
[13831] | 78 | private int xAxisTicks = 5;
|
---|
| 79 | public int XAxisTicks {
|
---|
| 80 | get { return xAxisTicks; }
|
---|
[13843] | 81 | set {
|
---|
| 82 | if (value != xAxisTicks) {
|
---|
| 83 | xAxisTicks = value;
|
---|
[15211] | 84 | SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
|
---|
[13843] | 85 | RecalculateInternalDataset();
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
[13780] | 88 | }
|
---|
[13842] | 89 | private double? fixedXAxisMin;
|
---|
| 90 | public double? FixedXAxisMin {
|
---|
| 91 | get { return fixedXAxisMin; }
|
---|
| 92 | set {
|
---|
| 93 | if ((value.HasValue && fixedXAxisMin.HasValue && !value.Value.IsAlmost(fixedXAxisMin.Value)) || (value.HasValue != fixedXAxisMin.HasValue)) {
|
---|
| 94 | fixedXAxisMin = value;
|
---|
[15211] | 95 | SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
|
---|
| 96 | RecalculateInternalDataset();
|
---|
| 97 | // set the vertical line position
|
---|
| 98 | if (VerticalLineAnnotation.X <= fixedXAxisMin) {
|
---|
| 99 | var axisX = chart.ChartAreas[0].AxisX;
|
---|
| 100 | var step = (axisX.Maximum - axisX.Minimum) / drawingSteps;
|
---|
| 101 | VerticalLineAnnotation.X = axisX.Minimum + step;
|
---|
[14006] | 102 | }
|
---|
[13842] | 103 | }
|
---|
| 104 | }
|
---|
| 105 | }
|
---|
| 106 | private double? fixedXAxisMax;
|
---|
| 107 | public double? FixedXAxisMax {
|
---|
| 108 | get { return fixedXAxisMax; }
|
---|
| 109 | set {
|
---|
| 110 | if ((value.HasValue && fixedXAxisMax.HasValue && !value.Value.IsAlmost(fixedXAxisMax.Value)) || (value.HasValue != fixedXAxisMax.HasValue)) {
|
---|
| 111 | fixedXAxisMax = value;
|
---|
[15211] | 112 | SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
|
---|
| 113 | RecalculateInternalDataset();
|
---|
| 114 | // set the vertical line position
|
---|
| 115 | if (VerticalLineAnnotation.X >= fixedXAxisMax) {
|
---|
| 116 | var axisX = chart.ChartAreas[0].AxisX;
|
---|
| 117 | var step = (axisX.Maximum - axisX.Minimum) / drawingSteps;
|
---|
| 118 | VerticalLineAnnotation.X = axisX.Maximum - step;
|
---|
[14006] | 119 | }
|
---|
[13842] | 120 | }
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 |
|
---|
[13831] | 124 | private int yAxisTicks = 5;
|
---|
[13842] | 125 | public int YAxisTicks {
|
---|
[13831] | 126 | get { return yAxisTicks; }
|
---|
[13843] | 127 | set {
|
---|
| 128 | if (value != yAxisTicks) {
|
---|
| 129 | yAxisTicks = value;
|
---|
[15211] | 130 | SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
|
---|
[13843] | 131 | RecalculateInternalDataset();
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
[13831] | 134 | }
|
---|
[13842] | 135 | private double? fixedYAxisMin;
|
---|
| 136 | public double? FixedYAxisMin {
|
---|
| 137 | get { return fixedYAxisMin; }
|
---|
| 138 | set {
|
---|
| 139 | if ((value.HasValue && fixedYAxisMin.HasValue && !value.Value.IsAlmost(fixedYAxisMin.Value)) || (value.HasValue != fixedYAxisMin.HasValue)) {
|
---|
| 140 | fixedYAxisMin = value;
|
---|
[15211] | 141 | SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
|
---|
[13842] | 142 | }
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 | private double? fixedYAxisMax;
|
---|
| 146 | public double? FixedYAxisMax {
|
---|
| 147 | get { return fixedYAxisMax; }
|
---|
| 148 | set {
|
---|
| 149 | if ((value.HasValue && fixedYAxisMax.HasValue && !value.Value.IsAlmost(fixedYAxisMax.Value)) || (value.HasValue != fixedYAxisMax.HasValue)) {
|
---|
| 150 | fixedYAxisMax = value;
|
---|
[15211] | 151 | SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
|
---|
[13842] | 152 | }
|
---|
| 153 | }
|
---|
| 154 | }
|
---|
[13780] | 155 |
|
---|
[15213] | 156 | private double trainingMin = -1;
|
---|
| 157 | private double trainingMax = 1;
|
---|
[13780] | 158 |
|
---|
[13831] | 159 | private int drawingSteps = 1000;
|
---|
| 160 | public int DrawingSteps {
|
---|
| 161 | get { return drawingSteps; }
|
---|
[13842] | 162 | set {
|
---|
| 163 | if (value != drawingSteps) {
|
---|
| 164 | drawingSteps = value;
|
---|
| 165 | RecalculateInternalDataset();
|
---|
| 166 | ResizeAllSeriesData();
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
[13780] | 169 | }
|
---|
| 170 |
|
---|
[13831] | 171 | private string freeVariable;
|
---|
| 172 | public string FreeVariable {
|
---|
| 173 | get { return freeVariable; }
|
---|
[13780] | 174 | set {
|
---|
[13831] | 175 | if (value == freeVariable) return;
|
---|
| 176 | if (solutions.Any(s => !s.ProblemData.Dataset.DoubleVariables.Contains(value))) {
|
---|
| 177 | throw new ArgumentException("Variable does not exist in the ProblemData of the Solutions.");
|
---|
| 178 | }
|
---|
| 179 | freeVariable = value;
|
---|
| 180 | RecalculateInternalDataset();
|
---|
[13780] | 181 | }
|
---|
| 182 | }
|
---|
| 183 |
|
---|
[13843] | 184 | private double yMin;
|
---|
| 185 | public double YMin {
|
---|
| 186 | get { return yMin; }
|
---|
| 187 | }
|
---|
| 188 | private double yMax;
|
---|
| 189 | public double YMax {
|
---|
| 190 | get { return yMax; }
|
---|
| 191 | }
|
---|
| 192 |
|
---|
[14089] | 193 | public bool IsZoomed {
|
---|
| 194 | get { return chart.ChartAreas[0].AxisX.ScaleView.IsZoomed; }
|
---|
| 195 | }
|
---|
| 196 |
|
---|
[13831] | 197 | private VerticalLineAnnotation VerticalLineAnnotation {
|
---|
| 198 | get { return (VerticalLineAnnotation)chart.Annotations.SingleOrDefault(x => x is VerticalLineAnnotation); }
|
---|
[13780] | 199 | }
|
---|
[13850] | 200 |
|
---|
| 201 | internal ElementPosition InnerPlotPosition {
|
---|
| 202 | get { return chart.ChartAreas[0].InnerPlotPosition; }
|
---|
| 203 | }
|
---|
[13842] | 204 | #endregion
|
---|
[13780] | 205 |
|
---|
[14158] | 206 | public event EventHandler ChartPostPaint;
|
---|
| 207 |
|
---|
[14852] | 208 | public PartialDependencePlot() {
|
---|
[13780] | 209 | InitializeComponent();
|
---|
[13836] | 210 |
|
---|
[13842] | 211 | solutions = new List<IRegressionSolution>();
|
---|
| 212 | seriesCache = new Dictionary<IRegressionSolution, Series>();
|
---|
| 213 | ciSeriesCache = new Dictionary<IRegressionSolution, Series>();
|
---|
| 214 |
|
---|
[13836] | 215 | // Configure axis
|
---|
| 216 | chart.CustomizeAllChartAreas();
|
---|
[15845] | 217 | chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = false;
|
---|
| 218 | chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = false;
|
---|
[13836] | 219 |
|
---|
[15839] | 220 | chart.ChartAreas[0].Axes.ToList().ForEach(x => { x.ScaleView.Zoomable = false; });
|
---|
| 221 |
|
---|
[13853] | 222 | configToolStripMenuItem = new ToolStripMenuItem("Configuration");
|
---|
[13855] | 223 | configToolStripMenuItem.Click += config_Click;
|
---|
[13853] | 224 | chart.ContextMenuStrip.Items.Add(new ToolStripSeparator());
|
---|
| 225 | chart.ContextMenuStrip.Items.Add(configToolStripMenuItem);
|
---|
[14852] | 226 | configurationDialog = new PartialDependencePlotConfigurationDialog(this);
|
---|
[13853] | 227 |
|
---|
[14852] | 228 | Disposed += Control_Disposed;
|
---|
[13780] | 229 | }
|
---|
[13853] | 230 |
|
---|
[14852] | 231 | private void Control_Disposed(object sender, EventArgs e) {
|
---|
[13843] | 232 | if (cancelCurrentRecalculateSource != null)
|
---|
| 233 | cancelCurrentRecalculateSource.Cancel();
|
---|
[13840] | 234 | }
|
---|
| 235 |
|
---|
[13842] | 236 | public void Configure(IEnumerable<IRegressionSolution> solutions, ModifiableDataset sharedFixedVariables, string freeVariable, int drawingSteps, bool initializeAxisRanges = true) {
|
---|
[13831] | 237 | if (!SolutionsCompatible(solutions))
|
---|
| 238 | throw new ArgumentException("Solutions are not compatible with the problem data.");
|
---|
| 239 | this.freeVariable = freeVariable;
|
---|
| 240 | this.drawingSteps = drawingSteps;
|
---|
[13780] | 241 |
|
---|
[13842] | 242 | this.solutions.Clear();
|
---|
| 243 | this.solutions.AddRange(solutions);
|
---|
| 244 |
|
---|
[13831] | 245 | // add an event such that whenever a value is changed in the shared dataset,
|
---|
| 246 | // this change is reflected in the internal dataset (where the value becomes a whole column)
|
---|
| 247 | if (this.sharedFixedVariables != null)
|
---|
| 248 | this.sharedFixedVariables.ItemChanged -= sharedFixedVariables_ItemChanged;
|
---|
| 249 | this.sharedFixedVariables = sharedFixedVariables;
|
---|
| 250 | this.sharedFixedVariables.ItemChanged += sharedFixedVariables_ItemChanged;
|
---|
[13780] | 251 |
|
---|
[13842] | 252 | RecalculateTrainingLimits(initializeAxisRanges);
|
---|
[13831] | 253 | RecalculateInternalDataset();
|
---|
[13842] | 254 |
|
---|
| 255 | chart.Series.Clear();
|
---|
| 256 | seriesCache.Clear();
|
---|
| 257 | ciSeriesCache.Clear();
|
---|
| 258 | foreach (var solution in this.solutions) {
|
---|
| 259 | var series = CreateSeries(solution);
|
---|
| 260 | seriesCache.Add(solution, series.Item1);
|
---|
| 261 | if (series.Item2 != null)
|
---|
| 262 | ciSeriesCache.Add(solution, series.Item2);
|
---|
| 263 | }
|
---|
| 264 |
|
---|
[14118] | 265 | // Set cursor and x-axis
|
---|
| 266 | // Make sure to allow a small offset to be able to distinguish the vertical line annotation from the axis
|
---|
| 267 | var defaultValue = sharedFixedVariables.GetDoubleValue(freeVariable, 0);
|
---|
| 268 | var step = (trainingMax - trainingMin) / drawingSteps;
|
---|
| 269 | var minimum = chart.ChartAreas[0].AxisX.Minimum;
|
---|
| 270 | var maximum = chart.ChartAreas[0].AxisX.Maximum;
|
---|
| 271 | if (defaultValue <= minimum)
|
---|
| 272 | VerticalLineAnnotation.X = minimum + step;
|
---|
| 273 | else if (defaultValue >= maximum)
|
---|
| 274 | VerticalLineAnnotation.X = maximum - step;
|
---|
| 275 | else
|
---|
| 276 | VerticalLineAnnotation.X = defaultValue;
|
---|
| 277 |
|
---|
| 278 | if (ShowCursor)
|
---|
[14267] | 279 | chart.Titles[0].Text = FreeVariable + " : " + defaultValue.ToString("G5", CultureInfo.CurrentCulture);
|
---|
[14118] | 280 |
|
---|
[13842] | 281 | ResizeAllSeriesData();
|
---|
| 282 | OrderAndColorSeries();
|
---|
[13780] | 283 | }
|
---|
| 284 |
|
---|
[13843] | 285 | public async Task RecalculateAsync(bool updateOnFinish = true, bool resetYAxis = true) {
|
---|
[13842] | 286 | if (IsDisposed
|
---|
| 287 | || sharedFixedVariables == null || !solutions.Any() || string.IsNullOrEmpty(freeVariable)
|
---|
[15211] | 288 | || trainingMin > trainingMax || drawingSteps == 0)
|
---|
[13842] | 289 | return;
|
---|
[13829] | 290 |
|
---|
[13853] | 291 | calculationPendingTimer.Start();
|
---|
| 292 |
|
---|
[13842] | 293 | // cancel previous recalculate call
|
---|
| 294 | if (cancelCurrentRecalculateSource != null)
|
---|
| 295 | cancelCurrentRecalculateSource.Cancel();
|
---|
| 296 | cancelCurrentRecalculateSource = new CancellationTokenSource();
|
---|
[14118] | 297 | var cancellationToken = cancelCurrentRecalculateSource.Token;
|
---|
[13842] | 298 |
|
---|
| 299 | // Update series
|
---|
| 300 | try {
|
---|
[13843] | 301 | var limits = await UpdateAllSeriesDataAsync(cancellationToken);
|
---|
[15211] | 302 | chart.Invalidate();
|
---|
[13842] | 303 |
|
---|
[13843] | 304 | yMin = limits.Lower;
|
---|
| 305 | yMax = limits.Upper;
|
---|
[13842] | 306 | // Set y-axis
|
---|
[13843] | 307 | if (resetYAxis)
|
---|
[15211] | 308 | SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
|
---|
[13842] | 309 |
|
---|
| 310 | UpdateOutOfTrainingRangeStripLines();
|
---|
| 311 |
|
---|
[13853] | 312 | calculationPendingTimer.Stop();
|
---|
| 313 | calculationPendingLabel.Visible = false;
|
---|
[13843] | 314 | if (updateOnFinish)
|
---|
| 315 | Update();
|
---|
[15211] | 316 | }
|
---|
| 317 | catch (OperationCanceledException) { }
|
---|
| 318 | catch (AggregateException ae) {
|
---|
[13842] | 319 | if (!ae.InnerExceptions.Any(e => e is OperationCanceledException))
|
---|
| 320 | throw;
|
---|
| 321 | }
|
---|
[13831] | 322 | }
|
---|
| 323 |
|
---|
[14131] | 324 | public void UpdateTitlePosition() {
|
---|
| 325 | var title = chart.Titles[0];
|
---|
| 326 | var plotArea = InnerPlotPosition;
|
---|
| 327 |
|
---|
| 328 | title.Visible = plotArea.Width != 0;
|
---|
| 329 |
|
---|
| 330 | title.Position.X = plotArea.X + (plotArea.Width / 2);
|
---|
| 331 | }
|
---|
| 332 |
|
---|
[15211] | 333 | private static void SetupAxis(EnhancedChart chart, Axis axis, double minValue, double maxValue, int ticks, double? fixedAxisMin, double? fixedAxisMax) {
|
---|
| 334 | //guard if only one distinct value is present
|
---|
| 335 | if (minValue.IsAlmost(maxValue)) {
|
---|
| 336 | minValue = minValue - 0.5;
|
---|
| 337 | maxValue = minValue + 0.5;
|
---|
[14157] | 338 | }
|
---|
[13843] | 339 |
|
---|
[15211] | 340 | double axisMin, axisMax, axisInterval;
|
---|
| 341 | ChartUtil.CalculateAxisInterval(minValue, maxValue, ticks, out axisMin, out axisMax, out axisInterval);
|
---|
| 342 | axis.Minimum = fixedAxisMin ?? axisMin;
|
---|
| 343 | axis.Maximum = fixedAxisMax ?? axisMax;
|
---|
| 344 | axis.Interval = (axis.Maximum - axis.Minimum) / ticks;
|
---|
| 345 |
|
---|
[15222] | 346 | chart.ChartAreas[0].RecalculateAxesScale();
|
---|
[13842] | 347 | }
|
---|
| 348 |
|
---|
| 349 | private void RecalculateTrainingLimits(bool initializeAxisRanges) {
|
---|
[15839] | 350 | trainingMin = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Where(x => !double.IsNaN(x)).Min()).Max();
|
---|
| 351 | trainingMax = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Where(x => !double.IsNaN(x)).Max()).Min();
|
---|
[13842] | 352 |
|
---|
| 353 | if (initializeAxisRanges) {
|
---|
| 354 | double xmin, xmax, xinterval;
|
---|
[15211] | 355 | //guard if only one distinct value is present
|
---|
| 356 | if (trainingMin.IsAlmost(trainingMax))
|
---|
| 357 | ChartUtil.CalculateAxisInterval(trainingMin - 0.5, trainingMax + 0.5, XAxisTicks, out xmin, out xmax, out xinterval);
|
---|
| 358 | else
|
---|
| 359 | ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
|
---|
| 360 |
|
---|
[13842] | 361 | FixedXAxisMin = xmin;
|
---|
| 362 | FixedXAxisMax = xmax;
|
---|
| 363 | }
|
---|
| 364 | }
|
---|
| 365 |
|
---|
[13831] | 366 | private void RecalculateInternalDataset() {
|
---|
[13843] | 367 | if (sharedFixedVariables == null)
|
---|
| 368 | return;
|
---|
| 369 |
|
---|
[13831] | 370 | // we expand the range in order to get nice tick intervals on the x axis
|
---|
[13829] | 371 | double xmin, xmax, xinterval;
|
---|
[15211] | 372 | //guard if only one distinct value is present
|
---|
| 373 | if (trainingMin.IsAlmost(trainingMax))
|
---|
| 374 | ChartUtil.CalculateAxisInterval(trainingMin - 0.5, trainingMin + 0.5, XAxisTicks, out xmin, out xmax, out xinterval);
|
---|
| 375 | else
|
---|
| 376 | ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
|
---|
[13842] | 377 |
|
---|
| 378 | if (FixedXAxisMin.HasValue) xmin = FixedXAxisMin.Value;
|
---|
| 379 | if (FixedXAxisMax.HasValue) xmax = FixedXAxisMax.Value;
|
---|
[13831] | 380 | double step = (xmax - xmin) / drawingSteps;
|
---|
| 381 |
|
---|
[13829] | 382 | var xvalues = new List<double>();
|
---|
[13831] | 383 | for (int i = 0; i < drawingSteps; i++)
|
---|
| 384 | xvalues.Add(xmin + i * step);
|
---|
| 385 |
|
---|
[14826] | 386 | if (sharedFixedVariables == null)
|
---|
| 387 | return;
|
---|
| 388 |
|
---|
| 389 | var variables = sharedFixedVariables.VariableNames.ToList();
|
---|
| 390 | var values = new List<IList>();
|
---|
| 391 | foreach (var varName in variables) {
|
---|
| 392 | if (varName == FreeVariable) {
|
---|
| 393 | values.Add(xvalues);
|
---|
| 394 | } else if (sharedFixedVariables.VariableHasType<double>(varName)) {
|
---|
| 395 | values.Add(Enumerable.Repeat(sharedFixedVariables.GetDoubleValue(varName, 0), xvalues.Count).ToList());
|
---|
| 396 | } else if (sharedFixedVariables.VariableHasType<string>(varName)) {
|
---|
| 397 | values.Add(Enumerable.Repeat(sharedFixedVariables.GetStringValue(varName, 0), xvalues.Count).ToList());
|
---|
| 398 | }
|
---|
| 399 | }
|
---|
| 400 |
|
---|
| 401 | internalDataset = new ModifiableDataset(variables, values);
|
---|
[13808] | 402 | }
|
---|
| 403 |
|
---|
[13842] | 404 | private Tuple<Series, Series> CreateSeries(IRegressionSolution solution) {
|
---|
| 405 | var series = new Series {
|
---|
| 406 | ChartType = SeriesChartType.Line,
|
---|
| 407 | Name = solution.ProblemData.TargetVariable + " " + solutions.IndexOf(solution)
|
---|
| 408 | };
|
---|
| 409 | series.LegendText = series.Name;
|
---|
[13837] | 410 |
|
---|
[14099] | 411 | var confidenceBoundSolution = solution as IConfidenceRegressionSolution;
|
---|
[13842] | 412 | Series confidenceIntervalSeries = null;
|
---|
| 413 | if (confidenceBoundSolution != null) {
|
---|
| 414 | confidenceIntervalSeries = new Series {
|
---|
| 415 | ChartType = SeriesChartType.Range,
|
---|
| 416 | YValuesPerPoint = 2,
|
---|
| 417 | Name = "95% Conf. Interval " + series.Name,
|
---|
| 418 | IsVisibleInLegend = false
|
---|
| 419 | };
|
---|
[13836] | 420 | }
|
---|
[13842] | 421 | return Tuple.Create(series, confidenceIntervalSeries);
|
---|
| 422 | }
|
---|
[13836] | 423 |
|
---|
[13842] | 424 | private void OrderAndColorSeries() {
|
---|
[13836] | 425 | chart.SuspendRepaint();
|
---|
[13842] | 426 |
|
---|
[13836] | 427 | chart.Series.Clear();
|
---|
| 428 | // Add mean series for applying palette colors
|
---|
[13842] | 429 | foreach (var solution in solutions) {
|
---|
| 430 | chart.Series.Add(seriesCache[solution]);
|
---|
[13780] | 431 | }
|
---|
[13842] | 432 |
|
---|
[13836] | 433 | chart.Palette = ChartColorPalette.BrightPastel;
|
---|
| 434 | chart.ApplyPaletteColors();
|
---|
| 435 | chart.Palette = ChartColorPalette.None;
|
---|
| 436 |
|
---|
[13842] | 437 | // Add confidence interval series before its coresponding series for correct z index
|
---|
| 438 | foreach (var solution in solutions) {
|
---|
| 439 | Series ciSeries;
|
---|
| 440 | if (ciSeriesCache.TryGetValue(solution, out ciSeries)) {
|
---|
| 441 | var series = seriesCache[solution];
|
---|
[13995] | 442 | ciSeries.Color = Color.FromArgb(40, series.Color);
|
---|
[13842] | 443 | int idx = chart.Series.IndexOf(seriesCache[solution]);
|
---|
| 444 | chart.Series.Insert(idx, ciSeries);
|
---|
| 445 | }
|
---|
[13836] | 446 | }
|
---|
[13842] | 447 |
|
---|
[13836] | 448 | chart.ResumeRepaint(true);
|
---|
[13842] | 449 | }
|
---|
[13836] | 450 |
|
---|
[13843] | 451 | private async Task<DoubleLimit> UpdateAllSeriesDataAsync(CancellationToken cancellationToken) {
|
---|
| 452 | var updateTasks = solutions.Select(solution => UpdateSeriesDataAsync(solution, cancellationToken));
|
---|
| 453 |
|
---|
| 454 | double min = double.MaxValue, max = double.MinValue;
|
---|
| 455 | foreach (var update in updateTasks) {
|
---|
| 456 | var limit = await update;
|
---|
| 457 | if (limit.Lower < min) min = limit.Lower;
|
---|
| 458 | if (limit.Upper > max) max = limit.Upper;
|
---|
| 459 | }
|
---|
| 460 |
|
---|
| 461 | return new DoubleLimit(min, max);
|
---|
| 462 | }
|
---|
| 463 |
|
---|
| 464 | private Task<DoubleLimit> UpdateSeriesDataAsync(IRegressionSolution solution, CancellationToken cancellationToken) {
|
---|
[13842] | 465 | return Task.Run(() => {
|
---|
[13843] | 466 | var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
|
---|
| 467 | var yvalues = solution.Model.GetEstimatedValues(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
|
---|
[13836] | 468 |
|
---|
[13843] | 469 | double min = double.MaxValue, max = double.MinValue;
|
---|
[13820] | 470 |
|
---|
[13843] | 471 | var series = seriesCache[solution];
|
---|
| 472 | for (int i = 0; i < xvalues.Count; i++) {
|
---|
| 473 | series.Points[i].SetValueXY(xvalues[i], yvalues[i]);
|
---|
| 474 | if (yvalues[i] < min) min = yvalues[i];
|
---|
| 475 | if (yvalues[i] > max) max = yvalues[i];
|
---|
| 476 | }
|
---|
[13820] | 477 |
|
---|
[14118] | 478 | cancellationToken.ThrowIfCancellationRequested();
|
---|
| 479 |
|
---|
[14099] | 480 | var confidenceBoundSolution = solution as IConfidenceRegressionSolution;
|
---|
[13843] | 481 | if (confidenceBoundSolution != null) {
|
---|
| 482 | var confidenceIntervalSeries = ciSeriesCache[solution];
|
---|
[14118] | 483 | var variances = confidenceBoundSolution.Model.GetEstimatedVariances(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
|
---|
[13843] | 484 | for (int i = 0; i < xvalues.Count; i++) {
|
---|
| 485 | var lower = yvalues[i] - 1.96 * Math.Sqrt(variances[i]);
|
---|
| 486 | var upper = yvalues[i] + 1.96 * Math.Sqrt(variances[i]);
|
---|
| 487 | confidenceIntervalSeries.Points[i].SetValueXY(xvalues[i], lower, upper);
|
---|
| 488 | if (lower < min) min = lower;
|
---|
| 489 | if (upper > max) max = upper;
|
---|
[13842] | 490 | }
|
---|
[13843] | 491 | }
|
---|
| 492 |
|
---|
| 493 | cancellationToken.ThrowIfCancellationRequested();
|
---|
| 494 | return new DoubleLimit(min, max);
|
---|
[13842] | 495 | }, cancellationToken);
|
---|
| 496 | }
|
---|
[13840] | 497 |
|
---|
[13842] | 498 | private void ResizeAllSeriesData() {
|
---|
[13843] | 499 | if (internalDataset == null)
|
---|
| 500 | return;
|
---|
| 501 |
|
---|
[13842] | 502 | var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
|
---|
| 503 | foreach (var solution in solutions)
|
---|
| 504 | ResizeSeriesData(solution, xvalues);
|
---|
[13780] | 505 | }
|
---|
[13842] | 506 | private void ResizeSeriesData(IRegressionSolution solution, IList<double> xvalues = null) {
|
---|
| 507 | if (xvalues == null)
|
---|
| 508 | xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
|
---|
[13780] | 509 |
|
---|
[13842] | 510 | var series = seriesCache[solution];
|
---|
| 511 | series.Points.SuspendUpdates();
|
---|
[13853] | 512 | series.Points.Clear();
|
---|
[13842] | 513 | for (int i = 0; i < xvalues.Count; i++)
|
---|
| 514 | series.Points.Add(new DataPoint(xvalues[i], 0.0));
|
---|
| 515 | series.Points.ResumeUpdates();
|
---|
[13780] | 516 |
|
---|
[13842] | 517 | Series confidenceIntervalSeries;
|
---|
| 518 | if (ciSeriesCache.TryGetValue(solution, out confidenceIntervalSeries)) {
|
---|
| 519 | confidenceIntervalSeries.Points.SuspendUpdates();
|
---|
[13853] | 520 | confidenceIntervalSeries.Points.Clear();
|
---|
[13842] | 521 | for (int i = 0; i < xvalues.Count; i++)
|
---|
| 522 | confidenceIntervalSeries.Points.Add(new DataPoint(xvalues[i], new[] { -1.0, 1.0 }));
|
---|
| 523 | confidenceIntervalSeries.Points.ResumeUpdates();
|
---|
| 524 | }
|
---|
[13780] | 525 | }
|
---|
| 526 |
|
---|
[13842] | 527 | public async Task AddSolutionAsync(IRegressionSolution solution) {
|
---|
[13831] | 528 | if (!SolutionsCompatible(solutions.Concat(new[] { solution })))
|
---|
| 529 | throw new ArgumentException("The solution is not compatible with the problem data.");
|
---|
[13842] | 530 | if (solutions.Contains(solution))
|
---|
| 531 | return;
|
---|
| 532 |
|
---|
[13831] | 533 | solutions.Add(solution);
|
---|
[13842] | 534 | RecalculateTrainingLimits(true);
|
---|
| 535 |
|
---|
| 536 | var series = CreateSeries(solution);
|
---|
| 537 | seriesCache.Add(solution, series.Item1);
|
---|
| 538 | if (series.Item2 != null)
|
---|
| 539 | ciSeriesCache.Add(solution, series.Item2);
|
---|
| 540 |
|
---|
| 541 | ResizeSeriesData(solution);
|
---|
| 542 | OrderAndColorSeries();
|
---|
| 543 |
|
---|
| 544 | await RecalculateAsync();
|
---|
[13995] | 545 | var args = new EventArgs<IRegressionSolution>(solution);
|
---|
| 546 | OnSolutionAdded(this, args);
|
---|
[13780] | 547 | }
|
---|
[13995] | 548 |
|
---|
[13842] | 549 | public async Task RemoveSolutionAsync(IRegressionSolution solution) {
|
---|
| 550 | if (!solutions.Remove(solution))
|
---|
| 551 | return;
|
---|
| 552 |
|
---|
| 553 | RecalculateTrainingLimits(true);
|
---|
| 554 |
|
---|
| 555 | seriesCache.Remove(solution);
|
---|
| 556 | ciSeriesCache.Remove(solution);
|
---|
| 557 |
|
---|
| 558 | await RecalculateAsync();
|
---|
[13995] | 559 | var args = new EventArgs<IRegressionSolution>(solution);
|
---|
| 560 | OnSolutionRemoved(this, args);
|
---|
[13831] | 561 | }
|
---|
[13780] | 562 |
|
---|
[13831] | 563 | private static bool SolutionsCompatible(IEnumerable<IRegressionSolution> solutions) {
|
---|
[14826] | 564 | var refSolution = solutions.First();
|
---|
| 565 | var refSolVars = refSolution.ProblemData.Dataset.VariableNames;
|
---|
| 566 | foreach (var solution in solutions.Skip(1)) {
|
---|
| 567 | var variables1 = solution.ProblemData.Dataset.VariableNames;
|
---|
| 568 | if (!variables1.All(refSolVars.Contains))
|
---|
| 569 | return false;
|
---|
| 570 |
|
---|
| 571 | foreach (var factorVar in variables1.Where(solution.ProblemData.Dataset.VariableHasType<string>)) {
|
---|
| 572 | var distinctVals = refSolution.ProblemData.Dataset.GetStringValues(factorVar).Distinct();
|
---|
| 573 | if (solution.ProblemData.Dataset.GetStringValues(factorVar).Any(val => !distinctVals.Contains(val))) return false;
|
---|
[13831] | 574 | }
|
---|
| 575 | }
|
---|
| 576 | return true;
|
---|
[13780] | 577 | }
|
---|
| 578 |
|
---|
[13842] | 579 | private void UpdateOutOfTrainingRangeStripLines() {
|
---|
[13831] | 580 | var axisX = chart.ChartAreas[0].AxisX;
|
---|
| 581 | var lowerStripLine = axisX.StripLines[0];
|
---|
| 582 | var upperStripLine = axisX.StripLines[1];
|
---|
| 583 |
|
---|
| 584 | lowerStripLine.IntervalOffset = axisX.Minimum;
|
---|
[14006] | 585 | lowerStripLine.StripWidth = Math.Abs(trainingMin - axisX.Minimum);
|
---|
[13831] | 586 |
|
---|
| 587 | upperStripLine.IntervalOffset = trainingMax;
|
---|
[14006] | 588 | upperStripLine.StripWidth = Math.Abs(axisX.Maximum - trainingMax);
|
---|
[13780] | 589 | }
|
---|
| 590 |
|
---|
[13842] | 591 | #region Events
|
---|
[13995] | 592 | public event EventHandler<EventArgs<IRegressionSolution>> SolutionAdded;
|
---|
| 593 | public void OnSolutionAdded(object sender, EventArgs<IRegressionSolution> args) {
|
---|
| 594 | var added = SolutionAdded;
|
---|
| 595 | if (added == null) return;
|
---|
| 596 | added(sender, args);
|
---|
| 597 | }
|
---|
| 598 |
|
---|
| 599 | public event EventHandler<EventArgs<IRegressionSolution>> SolutionRemoved;
|
---|
| 600 | public void OnSolutionRemoved(object sender, EventArgs<IRegressionSolution> args) {
|
---|
| 601 | var removed = SolutionRemoved;
|
---|
| 602 | if (removed == null) return;
|
---|
| 603 | removed(sender, args);
|
---|
| 604 | }
|
---|
| 605 |
|
---|
[13817] | 606 | public event EventHandler VariableValueChanged;
|
---|
| 607 | public void OnVariableValueChanged(object sender, EventArgs args) {
|
---|
| 608 | var changed = VariableValueChanged;
|
---|
| 609 | if (changed == null) return;
|
---|
| 610 | changed(sender, args);
|
---|
| 611 | }
|
---|
| 612 |
|
---|
[14089] | 613 | public event EventHandler ZoomChanged;
|
---|
| 614 | public void OnZoomChanged(object sender, EventArgs args) {
|
---|
| 615 | var changed = ZoomChanged;
|
---|
| 616 | if (changed == null) return;
|
---|
| 617 | changed(sender, args);
|
---|
| 618 | }
|
---|
| 619 |
|
---|
[13842] | 620 | private void sharedFixedVariables_ItemChanged(object o, EventArgs<int, int> e) {
|
---|
| 621 | if (o != sharedFixedVariables) return;
|
---|
[14826] | 622 | var variables = sharedFixedVariables.VariableNames.ToList();
|
---|
[13842] | 623 | var rowIndex = e.Value;
|
---|
| 624 | var columnIndex = e.Value2;
|
---|
[13831] | 625 |
|
---|
[13842] | 626 | var variableName = variables[columnIndex];
|
---|
| 627 | if (variableName == FreeVariable) return;
|
---|
[14826] | 628 | if (internalDataset.VariableHasType<double>(variableName)) {
|
---|
| 629 | var v = sharedFixedVariables.GetDoubleValue(variableName, rowIndex);
|
---|
| 630 | var values = new List<double>(Enumerable.Repeat(v, internalDataset.Rows));
|
---|
| 631 | internalDataset.ReplaceVariable(variableName, values);
|
---|
| 632 | } else if (internalDataset.VariableHasType<string>(variableName)) {
|
---|
| 633 | var v = sharedFixedVariables.GetStringValue(variableName, rowIndex);
|
---|
| 634 | var values = new List<String>(Enumerable.Repeat(v, internalDataset.Rows));
|
---|
| 635 | internalDataset.ReplaceVariable(variableName, values);
|
---|
| 636 | } else {
|
---|
| 637 | // unsupported type
|
---|
| 638 | throw new NotSupportedException();
|
---|
| 639 | }
|
---|
[13780] | 640 | }
|
---|
| 641 |
|
---|
[13818] | 642 | private void chart_AnnotationPositionChanging(object sender, AnnotationPositionChangingEventArgs e) {
|
---|
[13840] | 643 | var step = (trainingMax - trainingMin) / drawingSteps;
|
---|
[13846] | 644 | double newLocation = step * (long)Math.Round(e.NewLocationX / step);
|
---|
[13840] | 645 | var axisX = chart.ChartAreas[0].AxisX;
|
---|
[13995] | 646 | if (newLocation >= axisX.Maximum)
|
---|
| 647 | newLocation = axisX.Maximum - step;
|
---|
| 648 | if (newLocation <= axisX.Minimum)
|
---|
| 649 | newLocation = axisX.Minimum + step;
|
---|
[13831] | 650 |
|
---|
[13846] | 651 | e.NewLocationX = newLocation;
|
---|
[14118] | 652 |
|
---|
| 653 | UpdateCursor();
|
---|
| 654 | }
|
---|
| 655 | private void chart_AnnotationPositionChanged(object sender, EventArgs e) {
|
---|
| 656 | UpdateCursor();
|
---|
| 657 | }
|
---|
[14826] | 658 | private void UpdateCursor() {
|
---|
[14118] | 659 | var x = VerticalLineAnnotation.X;
|
---|
[13831] | 660 | sharedFixedVariables.SetVariableValue(x, FreeVariable, 0);
|
---|
| 661 |
|
---|
[13853] | 662 | if (ShowCursor) {
|
---|
[14267] | 663 | chart.Titles[0].Text = FreeVariable + " : " + x.ToString("G5", CultureInfo.CurrentCulture);
|
---|
[13853] | 664 | chart.Update();
|
---|
| 665 | }
|
---|
[13831] | 666 |
|
---|
[13853] | 667 | OnVariableValueChanged(this, EventArgs.Empty);
|
---|
[13818] | 668 | }
|
---|
| 669 |
|
---|
[13780] | 670 | private void chart_MouseMove(object sender, MouseEventArgs e) {
|
---|
[13842] | 671 | bool hitCursor = chart.HitTest(e.X, e.Y).ChartElementType == ChartElementType.Annotation;
|
---|
| 672 | chart.Cursor = hitCursor ? Cursors.VSplit : Cursors.Default;
|
---|
[13780] | 673 | }
|
---|
| 674 |
|
---|
[14131] | 675 | private async void chart_DragDrop(object sender, DragEventArgs e) {
|
---|
[13780] | 676 | var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
|
---|
| 677 | if (data != null) {
|
---|
| 678 | var solution = data as IRegressionSolution;
|
---|
[13842] | 679 | if (!solutions.Contains(solution))
|
---|
[14131] | 680 | await AddSolutionAsync(solution);
|
---|
[13780] | 681 | }
|
---|
| 682 | }
|
---|
[13842] | 683 | private void chart_DragEnter(object sender, DragEventArgs e) {
|
---|
[13780] | 684 | if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return;
|
---|
| 685 | e.Effect = DragDropEffects.None;
|
---|
| 686 |
|
---|
| 687 | var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
|
---|
| 688 | var regressionSolution = data as IRegressionSolution;
|
---|
| 689 | if (regressionSolution != null) {
|
---|
| 690 | e.Effect = DragDropEffects.Copy;
|
---|
| 691 | }
|
---|
| 692 | }
|
---|
[13853] | 693 |
|
---|
| 694 | private void calculationPendingTimer_Tick(object sender, EventArgs e) {
|
---|
| 695 | calculationPendingLabel.Visible = true;
|
---|
| 696 | Update();
|
---|
| 697 | }
|
---|
| 698 |
|
---|
[13855] | 699 | private void config_Click(object sender, EventArgs e) {
|
---|
[13853] | 700 | configurationDialog.ShowDialog(this);
|
---|
[15818] | 701 | OnZoomChanged(this, EventArgs.Empty);
|
---|
[13853] | 702 | }
|
---|
[14089] | 703 |
|
---|
| 704 | private void chart_SelectionRangeChanged(object sender, CursorEventArgs e) {
|
---|
| 705 | OnZoomChanged(this, EventArgs.Empty);
|
---|
| 706 | }
|
---|
[14131] | 707 |
|
---|
| 708 | private void chart_Resize(object sender, EventArgs e) {
|
---|
| 709 | UpdateTitlePosition();
|
---|
| 710 | }
|
---|
[14158] | 711 |
|
---|
| 712 | private void chart_PostPaint(object sender, ChartPaintEventArgs e) {
|
---|
| 713 | if (ChartPostPaint != null)
|
---|
| 714 | ChartPostPaint(this, EventArgs.Empty);
|
---|
| 715 | }
|
---|
[13817] | 716 | #endregion
|
---|
[13780] | 717 | }
|
---|
| 718 | }
|
---|
[14131] | 719 |
|
---|