[6123] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6123] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Optimization;
|
---|
[16565] | 27 | using HEAL.Attic;
|
---|
[6123] | 28 |
|
---|
[9743] | 29 | namespace HeuristicLab.Problems.DataAnalysis.Trading {
|
---|
[6123] | 30 | /// <summary>
|
---|
| 31 | /// Abstract base class for trading data analysis solutions
|
---|
| 32 | /// </summary>
|
---|
[16565] | 33 | [StorableType("1AF0637D-7F29-4A57-8CC8-3AAFA402473F")]
|
---|
[9745] | 34 | public abstract class Solution : DataAnalysisSolution, ISolution {
|
---|
[6123] | 35 | private const string TrainingSharpeRatioResultName = "Sharpe ratio (training)";
|
---|
| 36 | private const string TestSharpeRatioResultName = "Sharpe ratio (test)";
|
---|
[9176] | 37 | private const string TrainingProfitResultName = "Profit (training)";
|
---|
| 38 | private const string TestProfitResultName = "Profit (test)";
|
---|
[6123] | 39 |
|
---|
[9745] | 40 | public new IModel Model {
|
---|
| 41 | get { return (IModel)base.Model; }
|
---|
[6123] | 42 | protected set { base.Model = value; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
[9745] | 45 | public new IProblemData ProblemData {
|
---|
| 46 | get { return (IProblemData)base.ProblemData; }
|
---|
[6123] | 47 | protected set { base.ProblemData = value; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | public double TrainingSharpeRatio {
|
---|
| 51 | get { return ((DoubleValue)this[TrainingSharpeRatioResultName].Value).Value; }
|
---|
| 52 | private set { ((DoubleValue)this[TrainingSharpeRatioResultName].Value).Value = value; }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public double TestSharpeRatio {
|
---|
| 56 | get { return ((DoubleValue)this[TestSharpeRatioResultName].Value).Value; }
|
---|
| 57 | private set { ((DoubleValue)this[TestSharpeRatioResultName].Value).Value = value; }
|
---|
| 58 | }
|
---|
[9176] | 59 | public double TrainingProfit {
|
---|
| 60 | get { return ((DoubleValue)this[TrainingProfitResultName].Value).Value; }
|
---|
| 61 | private set { ((DoubleValue)this[TrainingProfitResultName].Value).Value = value; }
|
---|
| 62 | }
|
---|
[6123] | 63 |
|
---|
[9176] | 64 | public double TestProfit {
|
---|
| 65 | get { return ((DoubleValue)this[TestProfitResultName].Value).Value; }
|
---|
| 66 | private set { ((DoubleValue)this[TestProfitResultName].Value).Value = value; }
|
---|
| 67 | }
|
---|
| 68 |
|
---|
[6123] | 69 | [StorableConstructor]
|
---|
[16565] | 70 | protected Solution(StorableConstructorFlag _) : base(_) { }
|
---|
[9745] | 71 | protected Solution(Solution original, Cloner cloner)
|
---|
[6123] | 72 | : base(original, cloner) {
|
---|
| 73 | }
|
---|
[9745] | 74 | public Solution(IModel model, IProblemData problemData)
|
---|
[6123] | 75 | : base(model, problemData) {
|
---|
| 76 | Add(new Result(TrainingSharpeRatioResultName, "Share ratio of the signals of the model on the training partition", new DoubleValue()));
|
---|
| 77 | Add(new Result(TestSharpeRatioResultName, "Sharpe ratio of the signals of the model on the test partition", new DoubleValue()));
|
---|
[9176] | 78 | Add(new Result(TrainingProfitResultName, "Profit of the model on the training partition", new DoubleValue()));
|
---|
| 79 | Add(new Result(TestProfitResultName, "Profit of the model on the test partition", new DoubleValue()));
|
---|
[6123] | 80 | }
|
---|
| 81 |
|
---|
[6937] | 82 | protected override void RecalculateResults() {
|
---|
[9744] | 83 | CalculateTradingResults();
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | protected void CalculateTradingResults() {
|
---|
[6123] | 87 | double[] trainingSignals = TrainingSignals.ToArray(); // cache values
|
---|
[9989] | 88 | IEnumerable<double> trainingReturns = ProblemData.Dataset.GetDoubleValues(ProblemData.PriceChangeVariable, ProblemData.TrainingIndices);
|
---|
[6123] | 89 | double[] testSignals = TestSignals.ToArray(); // cache values
|
---|
[9989] | 90 | IEnumerable<double> testReturns = ProblemData.Dataset.GetDoubleValues(ProblemData.PriceChangeVariable, ProblemData.TestIndices);
|
---|
[9176] | 91 |
|
---|
[6123] | 92 | OnlineCalculatorError errorState;
|
---|
| 93 | double trainingSharpeRatio = OnlineSharpeRatioCalculator.Calculate(trainingReturns, trainingSignals, ProblemData.TransactionCosts, out errorState);
|
---|
| 94 | TrainingSharpeRatio = errorState == OnlineCalculatorError.None ? trainingSharpeRatio : double.NaN;
|
---|
| 95 | double testSharpeRatio = OnlineSharpeRatioCalculator.Calculate(testReturns, testSignals, ProblemData.TransactionCosts, out errorState);
|
---|
| 96 | TestSharpeRatio = errorState == OnlineCalculatorError.None ? testSharpeRatio : double.NaN;
|
---|
| 97 |
|
---|
[9176] | 98 | double trainingProfit = OnlineProfitCalculator.Calculate(trainingReturns, trainingSignals, ProblemData.TransactionCosts, out errorState);
|
---|
| 99 | TrainingProfit = errorState == OnlineCalculatorError.None ? trainingProfit : double.NaN;
|
---|
| 100 | double testProfit = OnlineProfitCalculator.Calculate(testReturns, testSignals, ProblemData.TransactionCosts, out errorState);
|
---|
| 101 | TestProfit = errorState == OnlineCalculatorError.None ? testProfit : double.NaN;
|
---|
| 102 |
|
---|
[6123] | 103 | }
|
---|
| 104 |
|
---|
| 105 | public virtual IEnumerable<double> Signals {
|
---|
[9928] | 106 | get { return GetSignals(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
[6123] | 107 | }
|
---|
| 108 | public virtual IEnumerable<double> TrainingSignals {
|
---|
[9928] | 109 | get { return GetSignals(ProblemData.TrainingIndices); }
|
---|
[6123] | 110 | }
|
---|
| 111 | public virtual IEnumerable<double> TestSignals {
|
---|
[9928] | 112 | get { return GetSignals(ProblemData.TestIndices); }
|
---|
[6123] | 113 | }
|
---|
| 114 | public virtual IEnumerable<double> GetSignals(IEnumerable<int> rows) {
|
---|
| 115 | return Model.GetSignals(ProblemData.Dataset, rows);
|
---|
| 116 | }
|
---|
| 117 | }
|
---|
| 118 | }
|
---|