[16623] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using HEAL.Attic;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Selection;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 34 | [StorableType("3E8EA052-3B86-4609-BD38-E3FE78DAD2FF")]
|
---|
| 35 | [Item("DiversitySelector", "A selection operator that applies a diversity penalty to the objective function before applying an inner selector.")]
|
---|
| 36 | public sealed class DiversitySelector : StochasticSingleObjectiveSelector, ISingleObjectiveSelector {
|
---|
| 37 | private const string StrictSimilarityParameterName = "StrictSimilarity";
|
---|
| 38 | private const string SimilarityWeightParameterName = "SimilarityWeight";
|
---|
| 39 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
| 40 | private const string SelectorParameterName = "Selector";
|
---|
| 41 | private const string DiversityParameterName = "Diversity";
|
---|
| 42 |
|
---|
| 43 | public IValueParameter<ISingleObjectiveSelector> SelectorParameter {
|
---|
| 44 | get { return (IValueParameter<ISingleObjectiveSelector>)Parameters[SelectorParameterName]; }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | public ISingleObjectiveSelector Selector {
|
---|
| 48 | get { return SelectorParameter.Value; }
|
---|
| 49 | set { SelectorParameter.Value = value; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | public IScopeTreeLookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
| 53 | get { return (IScopeTreeLookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public IScopeTreeLookupParameter<DoubleValue> DiversityParameter {
|
---|
| 57 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters[DiversityParameterName]; }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | public IFixedValueParameter<BoolValue> StrictSimilarityParameter {
|
---|
| 61 | get { return (IFixedValueParameter<BoolValue>)Parameters[StrictSimilarityParameterName]; }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | public IFixedValueParameter<DoubleValue> SimilarityWeightParameter {
|
---|
| 65 | get { return (IFixedValueParameter<DoubleValue>)Parameters[SimilarityWeightParameterName]; }
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | public bool StrictSimilarity { get { return StrictSimilarityParameter.Value.Value; } }
|
---|
| 69 |
|
---|
| 70 | public double SimilarityWeight { get { return SimilarityWeightParameter.Value.Value; } }
|
---|
| 71 |
|
---|
| 72 | public DiversitySelector() : base() {
|
---|
| 73 | Parameters.Add(new FixedValueParameter<BoolValue>(StrictSimilarityParameterName, "Calculate strict similarity.", new BoolValue(true)));
|
---|
| 74 | Parameters.Add(new FixedValueParameter<DoubleValue>(SimilarityWeightParameterName, "Weight of the diversity term.", new DoubleValue(1)));
|
---|
| 75 | Parameters.Add(new ScopeTreeLookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees that should be analyzed."));
|
---|
| 76 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(DiversityParameterName));
|
---|
| 77 | Parameters.Add(new ValueParameter<ISingleObjectiveSelector>(SelectorParameterName, "The inner selection operator to select the parents.", new TournamentSelector()));
|
---|
| 78 |
|
---|
| 79 | RegisterParameterEventHandlers();
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | [StorableConstructor]
|
---|
| 83 | private DiversitySelector(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
| 84 |
|
---|
| 85 | private DiversitySelector(DiversitySelector original, Cloner cloner) : base(original, cloner) { }
|
---|
| 86 |
|
---|
| 87 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 88 | return new DiversitySelector(this, cloner);
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 92 | private void AfterDeserialization() {
|
---|
| 93 | RegisterParameterEventHandlers();
|
---|
| 94 |
|
---|
| 95 | if (!Parameters.ContainsKey(DiversityParameterName)) {
|
---|
| 96 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(DiversityParameterName));
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | #region Events
|
---|
| 101 | private void RegisterParameterEventHandlers() {
|
---|
| 102 | SelectorParameter.ValueChanged += new EventHandler(SelectorParameter_ValueChanged);
|
---|
| 103 | CopySelected.ValueChanged += new EventHandler(CopySelected_ValueChanged);
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | private void SelectorParameter_ValueChanged(object sender, EventArgs e) {
|
---|
| 107 | ParameterizeSelector(Selector);
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | private void CopySelected_ValueChanged(object sender, EventArgs e) {
|
---|
| 111 | if (CopySelected.Value != true) {
|
---|
| 112 | CopySelected.Value = true;
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 | #endregion
|
---|
| 116 |
|
---|
| 117 | protected override IScope[] Select(List<IScope> scopes) {
|
---|
| 118 | var w = SimilarityWeight;
|
---|
| 119 | if (w.IsAlmost(0)) {
|
---|
| 120 | ApplyInnerSelector();
|
---|
| 121 | return CurrentScope.SubScopes[1].SubScopes.ToArray();
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | var trees = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 125 | var qualities = QualityParameter.ActualValue;
|
---|
| 126 |
|
---|
| 127 | // calculate average similarity for each tree
|
---|
| 128 | var similarityMatrix = SymbolicExpressionTreeHash.ComputeSimilarityMatrix(trees, simplify: false, strict: StrictSimilarity);
|
---|
| 129 | var similarities = new double[trees.Length];
|
---|
| 130 | for (int i = 0; i < trees.Length; ++i) {
|
---|
| 131 | for (int j = 0; j < trees.Length; ++j) {
|
---|
| 132 | if (i != j) {
|
---|
| 133 | similarities[i] += similarityMatrix[i, j];
|
---|
| 134 | }
|
---|
| 135 | }
|
---|
| 136 | similarities[i] /= (trees.Length - 1);
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | var v = 1 - w;
|
---|
| 140 |
|
---|
| 141 | var maximization = MaximizationParameter.ActualValue.Value;
|
---|
| 142 | var diversities = new ItemArray<DoubleValue>(trees.Length);
|
---|
| 143 | for (int i = 0; i < trees.Length; ++i) {
|
---|
| 144 | var q = qualities[i].Value;
|
---|
| 145 | var d = 1 - similarities[i]; // average distance
|
---|
| 146 |
|
---|
| 147 | // assuming both q and d are in the interval [0, 1]
|
---|
| 148 | var value = maximization
|
---|
| 149 | ? (v * q) + (w * d)
|
---|
| 150 | : (v * q) - (w * d);
|
---|
| 151 |
|
---|
| 152 | diversities[i] = new DoubleValue(value);
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | Selector.QualityParameter.ActualName = "Diversity";
|
---|
| 156 | DiversityParameter.ActualValue = diversities;
|
---|
| 157 | ApplyInnerSelector(); // apply inner selector
|
---|
| 158 |
|
---|
| 159 | return CurrentScope.SubScopes[1].SubScopes.ToArray();
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | private void ParameterizeSelector(ISingleObjectiveSelector selector) {
|
---|
| 163 | selector.CopySelected = new BoolValue(true); // must always be true
|
---|
| 164 | selector.MaximizationParameter.ActualName = MaximizationParameter.Name;
|
---|
| 165 | selector.QualityParameter.ActualName = QualityParameter.Name;
|
---|
| 166 |
|
---|
| 167 | IStochasticOperator stoOp = (selector as IStochasticOperator);
|
---|
| 168 | if (stoOp != null) stoOp.RandomParameter.ActualName = RandomParameter.Name;
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | private void ApplyInnerSelector() {
|
---|
| 172 | // necessary for inner GenderSpecificSelector to execute all operations in OperationCollection
|
---|
| 173 | Stack<IOperation> executionStack = new Stack<IOperation>();
|
---|
| 174 | executionStack.Push(ExecutionContext.CreateChildOperation(Selector));
|
---|
| 175 | while (executionStack.Count > 0) {
|
---|
| 176 | CancellationToken.ThrowIfCancellationRequested();
|
---|
| 177 | IOperation next = executionStack.Pop();
|
---|
| 178 | if (next is OperationCollection) {
|
---|
| 179 | OperationCollection coll = (OperationCollection)next;
|
---|
| 180 | for (int i = coll.Count - 1; i >= 0; i--)
|
---|
| 181 | if (coll[i] != null) executionStack.Push(coll[i]);
|
---|
| 182 | } else if (next is IAtomicOperation) {
|
---|
| 183 | IAtomicOperation operation = (IAtomicOperation)next;
|
---|
| 184 | next = operation.Operator.Execute((IExecutionContext)operation, CancellationToken);
|
---|
| 185 | if (next != null) executionStack.Push(next);
|
---|
| 186 | }
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 | }
|
---|
| 190 | }
|
---|