1 | using System.Collections.Generic;
|
---|
2 | using System.Linq;
|
---|
3 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
4 | using static HeuristicLab.Problems.DataAnalysis.Symbolic.SymbolicExpressionHashExtensions;
|
---|
5 |
|
---|
6 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
7 | public static class SymbolicExpressionTreeHash {
|
---|
8 | private static readonly Addition add = new Addition();
|
---|
9 | private static readonly Subtraction sub = new Subtraction();
|
---|
10 | private static readonly Multiplication mul = new Multiplication();
|
---|
11 | private static readonly Division div = new Division();
|
---|
12 | private static readonly Logarithm log = new Logarithm();
|
---|
13 | private static readonly Exponential exp = new Exponential();
|
---|
14 | private static readonly Sine sin = new Sine();
|
---|
15 | private static readonly Cosine cos = new Cosine();
|
---|
16 | private static readonly Constant constant = new Constant();
|
---|
17 |
|
---|
18 | private static readonly ISymbolicExpressionTreeNodeComparer comparer = new SymbolicExpressionTreeNodeComparer();
|
---|
19 |
|
---|
20 | public static int ComputeHash(this ISymbolicExpressionTree tree) {
|
---|
21 | return ComputeHash(tree.Root.GetSubtree(0).GetSubtree(0));
|
---|
22 | }
|
---|
23 |
|
---|
24 | public static Dictionary<ISymbolicExpressionTreeNode, int> ComputeNodeHashes(this ISymbolicExpressionTree tree) {
|
---|
25 | var root = tree.Root.GetSubtree(0).GetSubtree(0);
|
---|
26 | var nodes = root.MakeNodes();
|
---|
27 | nodes.UpdateNodeSizes();
|
---|
28 |
|
---|
29 | for (int i = 0; i < nodes.Length; ++i) {
|
---|
30 | if (nodes[i].IsChild)
|
---|
31 | continue;
|
---|
32 | nodes[i].CalculatedHashValue = nodes.ComputeHash(i);
|
---|
33 | }
|
---|
34 | return nodes.ToDictionary(x => x.Data, x => x.CalculatedHashValue);
|
---|
35 | }
|
---|
36 |
|
---|
37 | public static int ComputeHash(this ISymbolicExpressionTreeNode treeNode) {
|
---|
38 | var hashNodes = treeNode.MakeNodes();
|
---|
39 | var simplified = hashNodes.Simplify();
|
---|
40 | return ComputeHash(simplified);
|
---|
41 | }
|
---|
42 |
|
---|
43 | public static int ComputeHash(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
|
---|
44 | int hash = 1315423911;
|
---|
45 | foreach (var node in nodes)
|
---|
46 | hash ^= (hash << 5) + node.CalculatedHashValue + (hash >> 2);
|
---|
47 | return hash;
|
---|
48 | }
|
---|
49 |
|
---|
50 | public static HashNode<ISymbolicExpressionTreeNode> ToHashNode(this ISymbolicExpressionTreeNode node) {
|
---|
51 | var symbol = node.Symbol;
|
---|
52 | var name = symbol.Name;
|
---|
53 | if (symbol is Variable) {
|
---|
54 | var variableTreeNode = (VariableTreeNode)node;
|
---|
55 | name = variableTreeNode.VariableName;
|
---|
56 | }
|
---|
57 | var hash = name.GetHashCode();
|
---|
58 | var hashNode = new HashNode<ISymbolicExpressionTreeNode>(comparer) {
|
---|
59 | Data = node,
|
---|
60 | Arity = node.SubtreeCount,
|
---|
61 | Size = node.SubtreeCount,
|
---|
62 | IsCommutative = node.Symbol is Addition || node.Symbol is Multiplication,
|
---|
63 | Enabled = true,
|
---|
64 | HashValue = hash,
|
---|
65 | CalculatedHashValue = hash
|
---|
66 | };
|
---|
67 | if (symbol is Addition) {
|
---|
68 | hashNode.Simplify = SimplifyAddition;
|
---|
69 | } else if (symbol is Multiplication) {
|
---|
70 | hashNode.Simplify = SimplifyMultiplication;
|
---|
71 | } else if (symbol is Division) {
|
---|
72 | hashNode.Simplify = SimplifyDivision;
|
---|
73 | } else if (symbol is Logarithm || symbol is Exponential || symbol is Sine || symbol is Cosine) {
|
---|
74 | hashNode.Simplify = SimplifyUnaryNode;
|
---|
75 | } else if (symbol is Subtraction) {
|
---|
76 | hashNode.Simplify = SimplifyBinaryNode;
|
---|
77 | }
|
---|
78 | return hashNode;
|
---|
79 | }
|
---|
80 |
|
---|
81 | public static HashNode<ISymbolicExpressionTreeNode>[] MakeNodes(this ISymbolicExpressionTreeNode node) {
|
---|
82 | return node.IterateNodesPostfix().Select(ToHashNode).ToArray();
|
---|
83 | }
|
---|
84 |
|
---|
85 | #region parse a nodes array back into a tree
|
---|
86 | public static ISymbolicExpressionTree ToTree(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
|
---|
87 | var root = new ProgramRootSymbol().CreateTreeNode();
|
---|
88 | var start = new StartSymbol().CreateTreeNode();
|
---|
89 | root.AddSubtree(start);
|
---|
90 | start.AddSubtree(nodes.ToSubtree());
|
---|
91 | return new SymbolicExpressionTree(root);
|
---|
92 | }
|
---|
93 |
|
---|
94 | public static ISymbolicExpressionTreeNode ToSubtree(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
|
---|
95 | var treeNodes = nodes.Select(x => x.Data.Symbol.CreateTreeNode()).ToArray();
|
---|
96 |
|
---|
97 | for (int i = nodes.Length - 1; i >= 0; --i) {
|
---|
98 | var node = nodes[i];
|
---|
99 |
|
---|
100 | if (node.IsChild) {
|
---|
101 | if (node.Data is VariableTreeNode variable) {
|
---|
102 | var variableTreeNode = (VariableTreeNode)treeNodes[i];
|
---|
103 | variableTreeNode.VariableName = variable.VariableName;
|
---|
104 | variableTreeNode.Weight = 1;
|
---|
105 | } else if (node.Data is ConstantTreeNode @const) {
|
---|
106 | var constantTreeNode = (ConstantTreeNode)treeNodes[i];
|
---|
107 | constantTreeNode.Value = @const.Value;
|
---|
108 | }
|
---|
109 | continue;
|
---|
110 | }
|
---|
111 |
|
---|
112 | var treeNode = treeNodes[i];
|
---|
113 |
|
---|
114 | foreach (var j in nodes.IterateChildren(i)) {
|
---|
115 | treeNode.AddSubtree(treeNodes[j]);
|
---|
116 | }
|
---|
117 | }
|
---|
118 |
|
---|
119 | return treeNodes.Last();
|
---|
120 | }
|
---|
121 |
|
---|
122 | private static T CreateTreeNode<T>(this ISymbol symbol) where T : class, ISymbolicExpressionTreeNode {
|
---|
123 | return (T)symbol.CreateTreeNode();
|
---|
124 | }
|
---|
125 | #endregion
|
---|
126 |
|
---|
127 | #region tree simplification
|
---|
128 | // these simplification methods rely on the assumption that child nodes of the current node have already been simplified
|
---|
129 | // (in other words simplification should be applied in a bottom-up fashion)
|
---|
130 | public static ISymbolicExpressionTree Simplify(ISymbolicExpressionTree tree) {
|
---|
131 | var root = tree.Root.GetSubtree(0).GetSubtree(0);
|
---|
132 | var nodes = root.MakeNodes();
|
---|
133 | var simplified = nodes.Simplify();
|
---|
134 | return simplified.ToTree();
|
---|
135 | }
|
---|
136 |
|
---|
137 | public static void SimplifyAddition(HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
138 | // simplify additions of terms by eliminating terms with the same symbol and hash
|
---|
139 | var children = nodes.IterateChildren(i);
|
---|
140 |
|
---|
141 | var curr = children[0];
|
---|
142 | var node = nodes[i];
|
---|
143 |
|
---|
144 | foreach (var j in children.Skip(1)) {
|
---|
145 | if (nodes[j] == nodes[curr]) {
|
---|
146 | for (int k = j - nodes[j].Size; k <= j; ++k) {
|
---|
147 | nodes[k].Enabled = false;
|
---|
148 | }
|
---|
149 | node.Arity--;
|
---|
150 | } else {
|
---|
151 | curr = j;
|
---|
152 | }
|
---|
153 | }
|
---|
154 | if (node.Arity == 1) { // if the arity is 1 we don't need the addition node at all
|
---|
155 | node.Enabled = false;
|
---|
156 | }
|
---|
157 | }
|
---|
158 |
|
---|
159 | // simplify multiplications by reducing constants and div terms
|
---|
160 | public static void SimplifyMultiplication(HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
161 | var node = nodes[i];
|
---|
162 | var children = nodes.IterateChildren(i);
|
---|
163 |
|
---|
164 | for (int j = 0; j < children.Length; ++j) {
|
---|
165 | var c = children[j];
|
---|
166 | var child = nodes[c];
|
---|
167 |
|
---|
168 | if (!child.Enabled)
|
---|
169 | continue;
|
---|
170 |
|
---|
171 | var symbol = child.Data.Symbol;
|
---|
172 | if (symbol is Constant) {
|
---|
173 | for (int k = j + 1; k < children.Length; ++k) {
|
---|
174 | var d = children[k];
|
---|
175 | if (nodes[d].Data.Symbol is Constant) {
|
---|
176 | ((ConstantTreeNode)child.Data).Value *= ((ConstantTreeNode)nodes[d].Data).Value;
|
---|
177 | nodes[d].Enabled = false;
|
---|
178 | node.Arity--;
|
---|
179 | } else {
|
---|
180 | break;
|
---|
181 | }
|
---|
182 | }
|
---|
183 | } else if (symbol is Division) {
|
---|
184 | var div = nodes[c];
|
---|
185 | var denominator =
|
---|
186 | div.Arity == 1 ?
|
---|
187 | nodes[c - 1] : // 1 / x is expressed as div(x) (with a single child)
|
---|
188 | nodes[c - nodes[c - 1].Size - 2]; // assume division always has arity 1 or 2
|
---|
189 |
|
---|
190 | foreach (var d in children) {
|
---|
191 | if (nodes[d].Enabled && nodes[d] == denominator) {
|
---|
192 | nodes[c].Enabled = nodes[d].Enabled = denominator.Enabled = false;
|
---|
193 | node.Arity -= 2; // matching child + division node
|
---|
194 | break;
|
---|
195 | }
|
---|
196 | }
|
---|
197 | }
|
---|
198 |
|
---|
199 | if (node.Arity == 0) { // if everything is simplified this node becomes constant
|
---|
200 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
201 | constantTreeNode.Value = 1;
|
---|
202 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
203 | } else if (node.Arity == 1) { // when i have only 1 arg left i can skip this node
|
---|
204 | node.Enabled = false;
|
---|
205 | }
|
---|
206 | }
|
---|
207 | }
|
---|
208 |
|
---|
209 | public static void SimplifyDivision(HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
210 | var node = nodes[i];
|
---|
211 | var children = nodes.IterateChildren(i);
|
---|
212 |
|
---|
213 | if (children.All(x => nodes[x].Data.Symbol is Constant)) {
|
---|
214 | var v = ((ConstantTreeNode)nodes[children.First()].Data).Value;
|
---|
215 | if (node.Arity == 1) {
|
---|
216 | v = 1 / v;
|
---|
217 | } else if (node.Arity > 1) {
|
---|
218 | foreach (var j in children.Skip(1)) {
|
---|
219 | v /= ((ConstantTreeNode)nodes[j].Data).Value;
|
---|
220 | }
|
---|
221 | }
|
---|
222 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
223 | constantTreeNode.Value = v;
|
---|
224 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
225 | return;
|
---|
226 | }
|
---|
227 |
|
---|
228 | var nominator = nodes[children[0]];
|
---|
229 | foreach (var j in children.Skip(1)) {
|
---|
230 | var denominator = nodes[j];
|
---|
231 | if (nominator == denominator) {
|
---|
232 | // disable all the children of the division node (nominator and children + denominator and children)
|
---|
233 | nominator.Enabled = denominator.Enabled = false;
|
---|
234 | node.Arity -= 2; // nominator + denominator
|
---|
235 | }
|
---|
236 | if (node.Arity == 0) {
|
---|
237 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
238 | constantTreeNode.Value = 1; // x / x = 1
|
---|
239 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
240 | }
|
---|
241 | }
|
---|
242 | }
|
---|
243 |
|
---|
244 | public static void SimplifyUnaryNode(HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
245 | // check if the child of the unary node is a constant, then the whole node can be simplified
|
---|
246 | var parent = nodes[i];
|
---|
247 | var child = nodes[i - 1];
|
---|
248 |
|
---|
249 | var parentSymbol = parent.Data.Symbol;
|
---|
250 | var childSymbol = child.Data.Symbol;
|
---|
251 |
|
---|
252 | if (childSymbol is Constant) {
|
---|
253 | nodes[i].Enabled = false;
|
---|
254 | } else if ((parentSymbol is Exponential && childSymbol is Logarithm) || (parentSymbol is Logarithm && childSymbol is Exponential)) {
|
---|
255 | child.Enabled = parent.Enabled = false;
|
---|
256 | }
|
---|
257 | }
|
---|
258 |
|
---|
259 | public static void SimplifyBinaryNode(HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
260 | var children = nodes.IterateChildren(i);
|
---|
261 | if (children.All(x => nodes[x].Data.Symbol is Constant)) {
|
---|
262 | foreach (var j in children) {
|
---|
263 | nodes[j].Enabled = false;
|
---|
264 | }
|
---|
265 | nodes[i] = constant.CreateTreeNode().ToHashNode();
|
---|
266 | }
|
---|
267 | }
|
---|
268 | #endregion
|
---|
269 | }
|
---|
270 | }
|
---|