[16255] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[16255] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[16284] | 22 | using System;
|
---|
[16382] | 23 | using System.Collections.Generic;
|
---|
[16218] | 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 26 | using static HeuristicLab.Problems.DataAnalysis.Symbolic.SymbolicExpressionHashExtensions;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 29 | public static class SymbolicExpressionTreeHash {
|
---|
| 30 | private static readonly Addition add = new Addition();
|
---|
| 31 | private static readonly Subtraction sub = new Subtraction();
|
---|
| 32 | private static readonly Multiplication mul = new Multiplication();
|
---|
| 33 | private static readonly Division div = new Division();
|
---|
| 34 | private static readonly Logarithm log = new Logarithm();
|
---|
| 35 | private static readonly Exponential exp = new Exponential();
|
---|
| 36 | private static readonly Sine sin = new Sine();
|
---|
| 37 | private static readonly Cosine cos = new Cosine();
|
---|
| 38 | private static readonly Constant constant = new Constant();
|
---|
| 39 |
|
---|
[16478] | 40 | private static ISymbolicExpressionTreeNode ActualRoot(this ISymbolicExpressionTree tree) => tree.Root.GetSubtree(0).GetSubtree(0);
|
---|
[17132] | 41 | public static ulong HashFunction(byte[] input) => HashUtil.DJBHash(input);
|
---|
[16218] | 42 |
|
---|
[16478] | 43 | #region tree hashing
|
---|
| 44 | public static ulong[] Hash(this ISymbolicExpressionTree tree, bool simplify = false, bool strict = false) {
|
---|
| 45 | return tree.ActualRoot().Hash(simplify, strict);
|
---|
[16218] | 46 | }
|
---|
| 47 |
|
---|
[16478] | 48 | public static ulong[] Hash(this ISymbolicExpressionTreeNode node, bool simplify = false, bool strict = false) {
|
---|
[17132] | 49 | var hashNodes = simplify ? node.MakeNodes(strict).Simplify(HashFunction) : node.MakeNodes(strict).Sort(HashFunction);
|
---|
[16478] | 50 | var hashes = new ulong[hashNodes.Length];
|
---|
| 51 | for (int i = 0; i < hashes.Length; ++i) {
|
---|
| 52 | hashes[i] = hashNodes[i].CalculatedHashValue;
|
---|
| 53 | }
|
---|
| 54 | return hashes;
|
---|
[16284] | 55 | }
|
---|
| 56 |
|
---|
[16478] | 57 | public static ulong ComputeHash(this ISymbolicExpressionTree tree, bool simplify = false, bool strict = false) {
|
---|
| 58 | return ComputeHash(tree.ActualRoot(), simplify, strict);
|
---|
| 59 | }
|
---|
[16284] | 60 |
|
---|
[16478] | 61 | public static ulong ComputeHash(this ISymbolicExpressionTreeNode treeNode, bool simplify = false, bool strict = false) {
|
---|
| 62 | return treeNode.Hash(simplify, strict).Last();
|
---|
| 63 | }
|
---|
[16284] | 64 |
|
---|
[16478] | 65 | public static HashNode<ISymbolicExpressionTreeNode> ToHashNode(this ISymbolicExpressionTreeNode node, bool strict = false) {
|
---|
| 66 | var symbol = node.Symbol;
|
---|
| 67 | var name = symbol.Name;
|
---|
| 68 | if (node is ConstantTreeNode constantNode) {
|
---|
| 69 | name = strict ? constantNode.Value.ToString() : symbol.Name;
|
---|
| 70 | } else if (node is VariableTreeNode variableNode) {
|
---|
| 71 | name = strict ? variableNode.Weight.ToString() + variableNode.VariableName : variableNode.VariableName;
|
---|
[16284] | 72 | }
|
---|
[16478] | 73 | var hash = (ulong)name.GetHashCode();
|
---|
[16983] | 74 | var hashNode = new HashNode<ISymbolicExpressionTreeNode> {
|
---|
[16478] | 75 | Data = node,
|
---|
| 76 | Arity = node.SubtreeCount,
|
---|
| 77 | Size = node.SubtreeCount,
|
---|
| 78 | IsCommutative = node.Symbol is Addition || node.Symbol is Multiplication,
|
---|
| 79 | Enabled = true,
|
---|
| 80 | HashValue = hash,
|
---|
| 81 | CalculatedHashValue = hash
|
---|
| 82 | };
|
---|
| 83 | if (symbol is Addition) {
|
---|
| 84 | hashNode.Simplify = SimplifyAddition;
|
---|
| 85 | } else if (symbol is Multiplication) {
|
---|
| 86 | hashNode.Simplify = SimplifyMultiplication;
|
---|
| 87 | } else if (symbol is Division) {
|
---|
| 88 | hashNode.Simplify = SimplifyDivision;
|
---|
| 89 | } else if (symbol is Logarithm || symbol is Exponential || symbol is Sine || symbol is Cosine) {
|
---|
| 90 | hashNode.Simplify = SimplifyUnaryNode;
|
---|
| 91 | } else if (symbol is Subtraction) {
|
---|
| 92 | hashNode.Simplify = SimplifyBinaryNode;
|
---|
| 93 | }
|
---|
| 94 | return hashNode;
|
---|
| 95 | }
|
---|
[16284] | 96 |
|
---|
[16478] | 97 | public static HashNode<ISymbolicExpressionTreeNode>[] MakeNodes(this ISymbolicExpressionTree tree, bool strict = false) {
|
---|
| 98 | return MakeNodes(tree.ActualRoot(), strict);
|
---|
| 99 | }
|
---|
[16284] | 100 |
|
---|
[16478] | 101 | public static HashNode<ISymbolicExpressionTreeNode>[] MakeNodes(this ISymbolicExpressionTreeNode node, bool strict = false) {
|
---|
| 102 | return node.IterateNodesPostfix().Select(x => x.ToHashNode(strict)).ToArray().UpdateNodeSizes();
|
---|
| 103 | }
|
---|
| 104 | #endregion
|
---|
| 105 |
|
---|
| 106 | #region tree similarity
|
---|
| 107 | public static double ComputeSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool simplify = false, bool strict = false) {
|
---|
| 108 | return ComputeSimilarity(t1.ActualRoot(), t2.ActualRoot(), simplify, strict);
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | public static double ComputeSimilarity(ISymbolicExpressionTreeNode t1, ISymbolicExpressionTreeNode t2, bool simplify = false, bool strict = false) {
|
---|
| 112 | var lh = t1.Hash(simplify, strict);
|
---|
| 113 | var rh = t2.Hash(simplify, strict);
|
---|
| 114 |
|
---|
[16284] | 115 | Array.Sort(lh);
|
---|
| 116 | Array.Sort(rh);
|
---|
| 117 |
|
---|
| 118 | return ComputeSimilarity(lh, rh);
|
---|
| 119 | }
|
---|
| 120 |
|
---|
[16478] | 121 | // requires lhs and rhs to be sorted
|
---|
| 122 | public static int IntersectCount(this ulong[] lh, ulong[] rh) {
|
---|
| 123 | int count = 0;
|
---|
[16284] | 124 | for (int i = 0, j = 0; i < lh.Length && j < rh.Length;) {
|
---|
| 125 | var h1 = lh[i];
|
---|
| 126 | var h2 = rh[j];
|
---|
| 127 | if (h1 == h2) {
|
---|
| 128 | ++count;
|
---|
| 129 | ++i;
|
---|
| 130 | ++j;
|
---|
| 131 | } else if (h1 < h2) {
|
---|
| 132 | ++i;
|
---|
| 133 | } else if (h1 > h2) {
|
---|
| 134 | ++j;
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
[16478] | 137 | return count;
|
---|
| 138 | }
|
---|
[16284] | 139 |
|
---|
[16478] | 140 | public static IEnumerable<ulong> Intersect(this ulong[] lh, ulong[] rh) {
|
---|
| 141 | for (int i = 0, j = 0; i < lh.Length && j < rh.Length;) {
|
---|
| 142 | var h1 = lh[i];
|
---|
| 143 | var h2 = rh[j];
|
---|
| 144 | if (h1 == h2) {
|
---|
| 145 | yield return h1;
|
---|
| 146 | ++i;
|
---|
| 147 | ++j;
|
---|
| 148 | } else if (h1 < h2) {
|
---|
| 149 | ++i;
|
---|
| 150 | } else if (h1 > h2) {
|
---|
| 151 | ++j;
|
---|
| 152 | }
|
---|
| 153 | }
|
---|
[16284] | 154 | }
|
---|
| 155 |
|
---|
[16478] | 156 | // this will only work if lh and rh are sorted
|
---|
| 157 | public static double ComputeSimilarity(ulong[] lh, ulong[] rh) {
|
---|
| 158 | return 2d * IntersectCount(lh, rh) / (lh.Length + rh.Length);
|
---|
| 159 | }
|
---|
| 160 |
|
---|
[16382] | 161 | public static double ComputeAverageSimilarity(IList<ISymbolicExpressionTree> trees, bool simplify = false, bool strict = false) {
|
---|
[16478] | 162 | var total = trees.Count * (trees.Count - 1) / 2;
|
---|
[16284] | 163 | double avg = 0;
|
---|
[16382] | 164 | var hashes = new ulong[trees.Count][];
|
---|
[16284] | 165 | // build hash arrays
|
---|
[16382] | 166 | for (int i = 0; i < trees.Count; ++i) {
|
---|
[16302] | 167 | var nodes = trees[i].MakeNodes(strict);
|
---|
[17132] | 168 | hashes[i] = (simplify ? nodes.Simplify(HashFunction) : nodes.Sort(HashFunction)).Select(x => x.CalculatedHashValue).ToArray();
|
---|
[16284] | 169 | Array.Sort(hashes[i]);
|
---|
| 170 | }
|
---|
| 171 | // compute similarity matrix
|
---|
[16382] | 172 | for (int i = 0; i < trees.Count - 1; ++i) {
|
---|
| 173 | for (int j = i + 1; j < trees.Count; ++j) {
|
---|
[16291] | 174 | avg += ComputeSimilarity(hashes[i], hashes[j]);
|
---|
[16284] | 175 | }
|
---|
| 176 | }
|
---|
| 177 | return avg / total;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
[17132] | 180 | public static double[,] ComputeSimilarityMatrix(IList<ulong[]> hashes) {
|
---|
| 181 | // compute similarity matrix
|
---|
| 182 | var n = hashes.Count;
|
---|
| 183 | var sim = new double[n, n];
|
---|
| 184 | for (int i = 0; i < n - 1; ++i) {
|
---|
| 185 | for (int j = i + 1; j < n; ++j) {
|
---|
| 186 | sim[i, j] = sim[j, i] = ComputeSimilarity(hashes[i], hashes[j]);
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 | return sim;
|
---|
| 190 | }
|
---|
| 191 |
|
---|
[16382] | 192 | public static double[,] ComputeSimilarityMatrix(IList<ISymbolicExpressionTree> trees, bool simplify = false, bool strict = false) {
|
---|
| 193 | var hashes = new ulong[trees.Count][];
|
---|
[16284] | 194 | // build hash arrays
|
---|
[16382] | 195 | for (int i = 0; i < trees.Count; ++i) {
|
---|
[16302] | 196 | var nodes = trees[i].MakeNodes(strict);
|
---|
[17132] | 197 | hashes[i] = (simplify ? nodes.Simplify(HashFunction) : nodes.Sort(HashFunction)).Select(x => x.CalculatedHashValue).ToArray();
|
---|
[16284] | 198 | Array.Sort(hashes[i]);
|
---|
| 199 | }
|
---|
[17132] | 200 | return ComputeSimilarityMatrix(hashes);
|
---|
[16284] | 201 | }
|
---|
[16478] | 202 | #endregion
|
---|
[16284] | 203 |
|
---|
[16218] | 204 | #region parse a nodes array back into a tree
|
---|
| 205 | public static ISymbolicExpressionTree ToTree(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
|
---|
| 206 | var root = new ProgramRootSymbol().CreateTreeNode();
|
---|
| 207 | var start = new StartSymbol().CreateTreeNode();
|
---|
| 208 | root.AddSubtree(start);
|
---|
| 209 | start.AddSubtree(nodes.ToSubtree());
|
---|
| 210 | return new SymbolicExpressionTree(root);
|
---|
| 211 | }
|
---|
| 212 |
|
---|
| 213 | public static ISymbolicExpressionTreeNode ToSubtree(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
|
---|
| 214 | var treeNodes = nodes.Select(x => x.Data.Symbol.CreateTreeNode()).ToArray();
|
---|
| 215 |
|
---|
| 216 | for (int i = nodes.Length - 1; i >= 0; --i) {
|
---|
| 217 | var node = nodes[i];
|
---|
| 218 |
|
---|
[16267] | 219 | if (node.IsLeaf) {
|
---|
[16218] | 220 | if (node.Data is VariableTreeNode variable) {
|
---|
| 221 | var variableTreeNode = (VariableTreeNode)treeNodes[i];
|
---|
| 222 | variableTreeNode.VariableName = variable.VariableName;
|
---|
[16255] | 223 | variableTreeNode.Weight = variable.Weight;
|
---|
[16218] | 224 | } else if (node.Data is ConstantTreeNode @const) {
|
---|
| 225 | var constantTreeNode = (ConstantTreeNode)treeNodes[i];
|
---|
| 226 | constantTreeNode.Value = @const.Value;
|
---|
| 227 | }
|
---|
| 228 | continue;
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 | var treeNode = treeNodes[i];
|
---|
| 232 |
|
---|
| 233 | foreach (var j in nodes.IterateChildren(i)) {
|
---|
| 234 | treeNode.AddSubtree(treeNodes[j]);
|
---|
| 235 | }
|
---|
| 236 | }
|
---|
| 237 |
|
---|
| 238 | return treeNodes.Last();
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | private static T CreateTreeNode<T>(this ISymbol symbol) where T : class, ISymbolicExpressionTreeNode {
|
---|
| 242 | return (T)symbol.CreateTreeNode();
|
---|
| 243 | }
|
---|
| 244 | #endregion
|
---|
| 245 |
|
---|
| 246 | #region tree simplification
|
---|
| 247 | // these simplification methods rely on the assumption that child nodes of the current node have already been simplified
|
---|
[16382] | 248 | // (in other words simplification should be applied in a bottom-up fashion)
|
---|
[16218] | 249 | public static ISymbolicExpressionTree Simplify(ISymbolicExpressionTree tree) {
|
---|
[17132] | 250 | return tree.MakeNodes().Simplify(HashFunction).ToTree();
|
---|
[16218] | 251 | }
|
---|
| 252 |
|
---|
[16305] | 253 | public static void SimplifyAddition(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
[16218] | 254 | // simplify additions of terms by eliminating terms with the same symbol and hash
|
---|
| 255 | var children = nodes.IterateChildren(i);
|
---|
| 256 |
|
---|
[16305] | 257 | // we always assume the child nodes are sorted
|
---|
[16218] | 258 | var curr = children[0];
|
---|
| 259 | var node = nodes[i];
|
---|
| 260 |
|
---|
| 261 | foreach (var j in children.Skip(1)) {
|
---|
| 262 | if (nodes[j] == nodes[curr]) {
|
---|
[16305] | 263 | nodes.SetEnabled(j, false);
|
---|
[16218] | 264 | node.Arity--;
|
---|
| 265 | } else {
|
---|
| 266 | curr = j;
|
---|
| 267 | }
|
---|
| 268 | }
|
---|
| 269 | if (node.Arity == 1) { // if the arity is 1 we don't need the addition node at all
|
---|
| 270 | node.Enabled = false;
|
---|
| 271 | }
|
---|
| 272 | }
|
---|
| 273 |
|
---|
[16382] | 274 | // simplify multiplications by reducing constants and div terms
|
---|
[16305] | 275 | public static void SimplifyMultiplication(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
[16218] | 276 | var node = nodes[i];
|
---|
| 277 | var children = nodes.IterateChildren(i);
|
---|
| 278 |
|
---|
| 279 | for (int j = 0; j < children.Length; ++j) {
|
---|
| 280 | var c = children[j];
|
---|
| 281 | var child = nodes[c];
|
---|
| 282 |
|
---|
| 283 | if (!child.Enabled)
|
---|
| 284 | continue;
|
---|
| 285 |
|
---|
| 286 | var symbol = child.Data.Symbol;
|
---|
[17132] | 287 | if (child.Data is ConstantTreeNode firstConst) {
|
---|
| 288 | // fold sibling constant nodes into the first constant
|
---|
[16218] | 289 | for (int k = j + 1; k < children.Length; ++k) {
|
---|
[17132] | 290 | var sibling = nodes[children[k]];
|
---|
| 291 | if (sibling.Data is ConstantTreeNode otherConst) {
|
---|
| 292 | sibling.Enabled = false;
|
---|
[16218] | 293 | node.Arity--;
|
---|
[17132] | 294 | firstConst.Value *= otherConst.Value;
|
---|
[16218] | 295 | } else {
|
---|
| 296 | break;
|
---|
| 297 | }
|
---|
| 298 | }
|
---|
[17132] | 299 | } else if (child.Data is VariableTreeNode variable) {
|
---|
| 300 | // fold sibling constant nodes into the variable weight
|
---|
| 301 | for (int k = j + 1; k < children.Length; ++k) {
|
---|
| 302 | var sibling = nodes[children[k]];
|
---|
| 303 | if (sibling.Data is ConstantTreeNode constantNode) {
|
---|
| 304 | sibling.Enabled = false;
|
---|
| 305 | node.Arity--;
|
---|
| 306 | variable.Weight *= constantNode.Value;
|
---|
| 307 | } else {
|
---|
| 308 | break;
|
---|
| 309 | }
|
---|
| 310 | }
|
---|
[16218] | 311 | } else if (symbol is Division) {
|
---|
[17132] | 312 | // 1/x is expressed as div(x) (with a single child)
|
---|
| 313 | // we assume division always has arity 1 or 2
|
---|
| 314 | var d = child.Arity == 1 ? c - 1 : c - nodes[c - 1].Size - 2;
|
---|
| 315 | var denominator = nodes[d];
|
---|
[16218] | 316 |
|
---|
[17132] | 317 | // iterate children of node i to see if any of them matches the denominator of div node c
|
---|
| 318 | for (int k = 0; k < children.Length; ++k) {
|
---|
| 319 | var sibling = nodes[children[k]];
|
---|
| 320 | if (sibling.Enabled && sibling == denominator) {
|
---|
| 321 | nodes.SetEnabled(children[j], false); // disable the div subtree
|
---|
| 322 | nodes.SetEnabled(children[k], false); // disable the sibling matching the denominator
|
---|
| 323 |
|
---|
[16218] | 324 | node.Arity -= 2; // matching child + division node
|
---|
| 325 | break;
|
---|
| 326 | }
|
---|
| 327 | }
|
---|
| 328 | }
|
---|
| 329 |
|
---|
| 330 | if (node.Arity == 0) { // if everything is simplified this node becomes constant
|
---|
| 331 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
| 332 | constantTreeNode.Value = 1;
|
---|
| 333 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
| 334 | } else if (node.Arity == 1) { // when i have only 1 arg left i can skip this node
|
---|
| 335 | node.Enabled = false;
|
---|
| 336 | }
|
---|
| 337 | }
|
---|
| 338 | }
|
---|
| 339 |
|
---|
[16305] | 340 | public static void SimplifyDivision(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
[16218] | 341 | var node = nodes[i];
|
---|
| 342 | var children = nodes.IterateChildren(i);
|
---|
| 343 |
|
---|
[16305] | 344 | var tmp = nodes;
|
---|
| 345 |
|
---|
| 346 | if (children.All(x => tmp[x].Data.Symbol is Constant)) {
|
---|
[16218] | 347 | var v = ((ConstantTreeNode)nodes[children.First()].Data).Value;
|
---|
| 348 | if (node.Arity == 1) {
|
---|
| 349 | v = 1 / v;
|
---|
| 350 | } else if (node.Arity > 1) {
|
---|
| 351 | foreach (var j in children.Skip(1)) {
|
---|
| 352 | v /= ((ConstantTreeNode)nodes[j].Data).Value;
|
---|
| 353 | }
|
---|
| 354 | }
|
---|
| 355 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
| 356 | constantTreeNode.Value = v;
|
---|
| 357 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
| 358 | return;
|
---|
| 359 | }
|
---|
| 360 |
|
---|
| 361 | var nominator = nodes[children[0]];
|
---|
| 362 | foreach (var j in children.Skip(1)) {
|
---|
| 363 | var denominator = nodes[j];
|
---|
| 364 | if (nominator == denominator) {
|
---|
| 365 | // disable all the children of the division node (nominator and children + denominator and children)
|
---|
| 366 | nominator.Enabled = denominator.Enabled = false;
|
---|
| 367 | node.Arity -= 2; // nominator + denominator
|
---|
| 368 | }
|
---|
| 369 | if (node.Arity == 0) {
|
---|
| 370 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
| 371 | constantTreeNode.Value = 1; // x / x = 1
|
---|
| 372 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
| 373 | }
|
---|
| 374 | }
|
---|
| 375 | }
|
---|
| 376 |
|
---|
[16305] | 377 | public static void SimplifyUnaryNode(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
[16218] | 378 | // check if the child of the unary node is a constant, then the whole node can be simplified
|
---|
| 379 | var parent = nodes[i];
|
---|
| 380 | var child = nodes[i - 1];
|
---|
| 381 |
|
---|
| 382 | var parentSymbol = parent.Data.Symbol;
|
---|
| 383 | var childSymbol = child.Data.Symbol;
|
---|
| 384 |
|
---|
| 385 | if (childSymbol is Constant) {
|
---|
| 386 | nodes[i].Enabled = false;
|
---|
| 387 | } else if ((parentSymbol is Exponential && childSymbol is Logarithm) || (parentSymbol is Logarithm && childSymbol is Exponential)) {
|
---|
| 388 | child.Enabled = parent.Enabled = false;
|
---|
| 389 | }
|
---|
| 390 | }
|
---|
| 391 |
|
---|
[16305] | 392 | public static void SimplifyBinaryNode(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
[16218] | 393 | var children = nodes.IterateChildren(i);
|
---|
[16305] | 394 | var tmp = nodes;
|
---|
| 395 | if (children.All(x => tmp[x].Data.Symbol is Constant)) {
|
---|
[16218] | 396 | foreach (var j in children) {
|
---|
| 397 | nodes[j].Enabled = false;
|
---|
| 398 | }
|
---|
| 399 | nodes[i] = constant.CreateTreeNode().ToHashNode();
|
---|
| 400 | }
|
---|
| 401 | }
|
---|
| 402 | #endregion
|
---|
| 403 | }
|
---|
| 404 | }
|
---|