[16255] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[16284] | 22 | using System;
|
---|
[16382] | 23 | using System.Collections.Generic;
|
---|
[16218] | 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 26 | using static HeuristicLab.Problems.DataAnalysis.Symbolic.SymbolicExpressionHashExtensions;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 29 | public static class SymbolicExpressionTreeHash {
|
---|
| 30 | private static readonly Addition add = new Addition();
|
---|
| 31 | private static readonly Subtraction sub = new Subtraction();
|
---|
| 32 | private static readonly Multiplication mul = new Multiplication();
|
---|
| 33 | private static readonly Division div = new Division();
|
---|
| 34 | private static readonly Logarithm log = new Logarithm();
|
---|
| 35 | private static readonly Exponential exp = new Exponential();
|
---|
| 36 | private static readonly Sine sin = new Sine();
|
---|
| 37 | private static readonly Cosine cos = new Cosine();
|
---|
| 38 | private static readonly Constant constant = new Constant();
|
---|
| 39 |
|
---|
| 40 | private static readonly ISymbolicExpressionTreeNodeComparer comparer = new SymbolicExpressionTreeNodeComparer();
|
---|
| 41 |
|
---|
[16263] | 42 | public static ulong ComputeHash(this ISymbolicExpressionTree tree) {
|
---|
[16218] | 43 | return ComputeHash(tree.Root.GetSubtree(0).GetSubtree(0));
|
---|
| 44 | }
|
---|
| 45 |
|
---|
[16284] | 46 | public static double ComputeSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool simplify = false) {
|
---|
| 47 | return ComputeSimilarity(t1.Root.GetSubtree(0).GetSubtree(0), t2.Root.GetSubtree(0).GetSubtree(0), simplify);
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | public static double ComputeSimilarity(ISymbolicExpressionTreeNode t1, ISymbolicExpressionTreeNode t2, bool simplify = false) {
|
---|
| 51 | HashNode<ISymbolicExpressionTreeNode>[] lhs;
|
---|
| 52 | HashNode<ISymbolicExpressionTreeNode>[] rhs;
|
---|
| 53 |
|
---|
| 54 | ulong hashFunction(byte[] input) => HashUtil.DJBHash(input);
|
---|
| 55 |
|
---|
| 56 | if (simplify) {
|
---|
| 57 | lhs = t1.MakeNodes().Simplify(hashFunction);
|
---|
| 58 | rhs = t2.MakeNodes().Simplify(hashFunction);
|
---|
| 59 | } else {
|
---|
| 60 | lhs = t1.MakeNodes().Sort(hashFunction); // sort calculates hash values
|
---|
| 61 | rhs = t2.MakeNodes().Sort(hashFunction);
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | var lh = lhs.Select(x => x.CalculatedHashValue).ToArray();
|
---|
| 65 | var rh = rhs.Select(x => x.CalculatedHashValue).ToArray();
|
---|
| 66 |
|
---|
| 67 | Array.Sort(lh);
|
---|
| 68 | Array.Sort(rh);
|
---|
| 69 |
|
---|
| 70 | return ComputeSimilarity(lh, rh);
|
---|
| 71 | }
|
---|
| 72 |
|
---|
[16382] | 73 | // this will only work if lh and rh are sorted
|
---|
[16284] | 74 | private static double ComputeSimilarity(ulong[] lh, ulong[] rh) {
|
---|
| 75 | double count = 0;
|
---|
| 76 | for (int i = 0, j = 0; i < lh.Length && j < rh.Length;) {
|
---|
| 77 | var h1 = lh[i];
|
---|
| 78 | var h2 = rh[j];
|
---|
| 79 | if (h1 == h2) {
|
---|
| 80 | ++count;
|
---|
| 81 | ++i;
|
---|
| 82 | ++j;
|
---|
| 83 | } else if (h1 < h2) {
|
---|
| 84 | ++i;
|
---|
| 85 | } else if (h1 > h2) {
|
---|
| 86 | ++j;
|
---|
| 87 | }
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | return 2d * count / (lh.Length + rh.Length);
|
---|
| 91 | }
|
---|
| 92 |
|
---|
[16382] | 93 | public static double ComputeAverageSimilarity(IList<ISymbolicExpressionTree> trees, bool simplify = false, bool strict = false) {
|
---|
| 94 | var total = (double)trees.Count * (trees.Count - 1) / 2;
|
---|
[16284] | 95 | double avg = 0;
|
---|
[16382] | 96 | var hashes = new ulong[trees.Count][];
|
---|
[16284] | 97 | // build hash arrays
|
---|
[16382] | 98 | for (int i = 0; i < trees.Count; ++i) {
|
---|
[16302] | 99 | var nodes = trees[i].MakeNodes(strict);
|
---|
| 100 | hashes[i] = (simplify ? nodes.Simplify(HashUtil.DJBHash) : nodes.Sort(HashUtil.DJBHash)).Select(x => x.CalculatedHashValue).ToArray();
|
---|
[16284] | 101 | Array.Sort(hashes[i]);
|
---|
| 102 | }
|
---|
| 103 | // compute similarity matrix
|
---|
[16382] | 104 | for (int i = 0; i < trees.Count - 1; ++i) {
|
---|
| 105 | for (int j = i + 1; j < trees.Count; ++j) {
|
---|
[16291] | 106 | avg += ComputeSimilarity(hashes[i], hashes[j]);
|
---|
[16284] | 107 | }
|
---|
| 108 | }
|
---|
| 109 | return avg / total;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
[16382] | 112 | public static double[,] ComputeSimilarityMatrix(IList<ISymbolicExpressionTree> trees, bool simplify = false, bool strict = false) {
|
---|
| 113 | var sim = new double[trees.Count, trees.Count];
|
---|
| 114 | var hashes = new ulong[trees.Count][];
|
---|
[16284] | 115 | // build hash arrays
|
---|
[16382] | 116 | for (int i = 0; i < trees.Count; ++i) {
|
---|
[16302] | 117 | var nodes = trees[i].MakeNodes(strict);
|
---|
| 118 | hashes[i] = (simplify ? nodes.Simplify(HashUtil.DJBHash) : nodes.Sort(HashUtil.DJBHash)).Select(x => x.CalculatedHashValue).ToArray();
|
---|
[16284] | 119 | Array.Sort(hashes[i]);
|
---|
| 120 | }
|
---|
| 121 | // compute similarity matrix
|
---|
[16382] | 122 | for (int i = 0; i < trees.Count - 1; ++i) {
|
---|
| 123 | for (int j = i + 1; j < trees.Count; ++j) {
|
---|
[16284] | 124 | sim[i, j] = sim[j, i] = ComputeSimilarity(hashes[i], hashes[j]);
|
---|
| 125 | }
|
---|
| 126 | }
|
---|
| 127 | return sim;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
[16302] | 130 | public static ulong ComputeHash(this ISymbolicExpressionTreeNode treeNode, bool strict = false) {
|
---|
[16272] | 131 | ulong hashFunction(byte[] input) => HashUtil.JSHash(input);
|
---|
[16302] | 132 | var hashNodes = treeNode.MakeNodes(strict);
|
---|
[16272] | 133 | var simplified = hashNodes.Simplify(hashFunction);
|
---|
[16263] | 134 | return simplified.Last().CalculatedHashValue;
|
---|
[16218] | 135 | }
|
---|
| 136 |
|
---|
[16302] | 137 | public static HashNode<ISymbolicExpressionTreeNode> ToHashNode(this ISymbolicExpressionTreeNode node, bool strict = false) {
|
---|
[16218] | 138 | var symbol = node.Symbol;
|
---|
| 139 | var name = symbol.Name;
|
---|
[16302] | 140 | if (node is ConstantTreeNode constantNode) {
|
---|
| 141 | name = strict ? constantNode.Value.ToString() : symbol.Name;
|
---|
| 142 | } else if (node is VariableTreeNode variableNode) {
|
---|
| 143 | name = strict ? variableNode.Weight.ToString() + variableNode.VariableName : variableNode.VariableName;
|
---|
[16218] | 144 | }
|
---|
[16263] | 145 | var hash = (ulong)name.GetHashCode();
|
---|
[16218] | 146 | var hashNode = new HashNode<ISymbolicExpressionTreeNode>(comparer) {
|
---|
| 147 | Data = node,
|
---|
| 148 | Arity = node.SubtreeCount,
|
---|
| 149 | Size = node.SubtreeCount,
|
---|
| 150 | IsCommutative = node.Symbol is Addition || node.Symbol is Multiplication,
|
---|
| 151 | Enabled = true,
|
---|
| 152 | HashValue = hash,
|
---|
| 153 | CalculatedHashValue = hash
|
---|
| 154 | };
|
---|
| 155 | if (symbol is Addition) {
|
---|
| 156 | hashNode.Simplify = SimplifyAddition;
|
---|
| 157 | } else if (symbol is Multiplication) {
|
---|
| 158 | hashNode.Simplify = SimplifyMultiplication;
|
---|
| 159 | } else if (symbol is Division) {
|
---|
| 160 | hashNode.Simplify = SimplifyDivision;
|
---|
| 161 | } else if (symbol is Logarithm || symbol is Exponential || symbol is Sine || symbol is Cosine) {
|
---|
| 162 | hashNode.Simplify = SimplifyUnaryNode;
|
---|
| 163 | } else if (symbol is Subtraction) {
|
---|
| 164 | hashNode.Simplify = SimplifyBinaryNode;
|
---|
| 165 | }
|
---|
| 166 | return hashNode;
|
---|
| 167 | }
|
---|
| 168 |
|
---|
[16302] | 169 | public static HashNode<ISymbolicExpressionTreeNode>[] MakeNodes(this ISymbolicExpressionTree tree, bool strict = false) {
|
---|
| 170 | return MakeNodes(tree.Root.GetSubtree(0).GetSubtree(0), strict);
|
---|
[16284] | 171 | }
|
---|
| 172 |
|
---|
[16302] | 173 | public static HashNode<ISymbolicExpressionTreeNode>[] MakeNodes(this ISymbolicExpressionTreeNode node, bool strict = false) {
|
---|
| 174 | return node.IterateNodesPostfix().Select(x => x.ToHashNode(strict)).ToArray().UpdateNodeSizes();
|
---|
[16218] | 175 | }
|
---|
| 176 |
|
---|
| 177 | #region parse a nodes array back into a tree
|
---|
| 178 | public static ISymbolicExpressionTree ToTree(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
|
---|
| 179 | var root = new ProgramRootSymbol().CreateTreeNode();
|
---|
| 180 | var start = new StartSymbol().CreateTreeNode();
|
---|
| 181 | root.AddSubtree(start);
|
---|
| 182 | start.AddSubtree(nodes.ToSubtree());
|
---|
| 183 | return new SymbolicExpressionTree(root);
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | public static ISymbolicExpressionTreeNode ToSubtree(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
|
---|
| 187 | var treeNodes = nodes.Select(x => x.Data.Symbol.CreateTreeNode()).ToArray();
|
---|
| 188 |
|
---|
| 189 | for (int i = nodes.Length - 1; i >= 0; --i) {
|
---|
| 190 | var node = nodes[i];
|
---|
| 191 |
|
---|
[16267] | 192 | if (node.IsLeaf) {
|
---|
[16218] | 193 | if (node.Data is VariableTreeNode variable) {
|
---|
| 194 | var variableTreeNode = (VariableTreeNode)treeNodes[i];
|
---|
| 195 | variableTreeNode.VariableName = variable.VariableName;
|
---|
[16255] | 196 | variableTreeNode.Weight = variable.Weight;
|
---|
[16218] | 197 | } else if (node.Data is ConstantTreeNode @const) {
|
---|
| 198 | var constantTreeNode = (ConstantTreeNode)treeNodes[i];
|
---|
| 199 | constantTreeNode.Value = @const.Value;
|
---|
| 200 | }
|
---|
| 201 | continue;
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 | var treeNode = treeNodes[i];
|
---|
| 205 |
|
---|
| 206 | foreach (var j in nodes.IterateChildren(i)) {
|
---|
| 207 | treeNode.AddSubtree(treeNodes[j]);
|
---|
| 208 | }
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | return treeNodes.Last();
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | private static T CreateTreeNode<T>(this ISymbol symbol) where T : class, ISymbolicExpressionTreeNode {
|
---|
| 215 | return (T)symbol.CreateTreeNode();
|
---|
| 216 | }
|
---|
| 217 | #endregion
|
---|
| 218 |
|
---|
| 219 | #region tree simplification
|
---|
| 220 | // these simplification methods rely on the assumption that child nodes of the current node have already been simplified
|
---|
[16382] | 221 | // (in other words simplification should be applied in a bottom-up fashion)
|
---|
[16218] | 222 | public static ISymbolicExpressionTree Simplify(ISymbolicExpressionTree tree) {
|
---|
[16272] | 223 | ulong hashFunction(byte[] bytes) => HashUtil.JSHash(bytes);
|
---|
[16218] | 224 | var root = tree.Root.GetSubtree(0).GetSubtree(0);
|
---|
| 225 | var nodes = root.MakeNodes();
|
---|
[16272] | 226 | var simplified = nodes.Simplify(hashFunction);
|
---|
[16218] | 227 | return simplified.ToTree();
|
---|
| 228 | }
|
---|
| 229 |
|
---|
[16305] | 230 | public static void SimplifyAddition(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
[16218] | 231 | // simplify additions of terms by eliminating terms with the same symbol and hash
|
---|
| 232 | var children = nodes.IterateChildren(i);
|
---|
| 233 |
|
---|
[16305] | 234 | // we always assume the child nodes are sorted
|
---|
[16218] | 235 | var curr = children[0];
|
---|
| 236 | var node = nodes[i];
|
---|
| 237 |
|
---|
| 238 | foreach (var j in children.Skip(1)) {
|
---|
| 239 | if (nodes[j] == nodes[curr]) {
|
---|
[16305] | 240 | nodes.SetEnabled(j, false);
|
---|
[16218] | 241 | node.Arity--;
|
---|
| 242 | } else {
|
---|
| 243 | curr = j;
|
---|
| 244 | }
|
---|
| 245 | }
|
---|
| 246 | if (node.Arity == 1) { // if the arity is 1 we don't need the addition node at all
|
---|
| 247 | node.Enabled = false;
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 |
|
---|
[16382] | 251 | // simplify multiplications by reducing constants and div terms
|
---|
[16305] | 252 | public static void SimplifyMultiplication(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
[16218] | 253 | var node = nodes[i];
|
---|
| 254 | var children = nodes.IterateChildren(i);
|
---|
| 255 |
|
---|
| 256 | for (int j = 0; j < children.Length; ++j) {
|
---|
| 257 | var c = children[j];
|
---|
| 258 | var child = nodes[c];
|
---|
| 259 |
|
---|
| 260 | if (!child.Enabled)
|
---|
| 261 | continue;
|
---|
| 262 |
|
---|
| 263 | var symbol = child.Data.Symbol;
|
---|
| 264 | if (symbol is Constant) {
|
---|
| 265 | for (int k = j + 1; k < children.Length; ++k) {
|
---|
| 266 | var d = children[k];
|
---|
| 267 | if (nodes[d].Data.Symbol is Constant) {
|
---|
| 268 | nodes[d].Enabled = false;
|
---|
| 269 | node.Arity--;
|
---|
| 270 | } else {
|
---|
| 271 | break;
|
---|
| 272 | }
|
---|
| 273 | }
|
---|
| 274 | } else if (symbol is Division) {
|
---|
| 275 | var div = nodes[c];
|
---|
| 276 | var denominator =
|
---|
| 277 | div.Arity == 1 ?
|
---|
| 278 | nodes[c - 1] : // 1 / x is expressed as div(x) (with a single child)
|
---|
| 279 | nodes[c - nodes[c - 1].Size - 2]; // assume division always has arity 1 or 2
|
---|
| 280 |
|
---|
| 281 | foreach (var d in children) {
|
---|
| 282 | if (nodes[d].Enabled && nodes[d] == denominator) {
|
---|
| 283 | nodes[c].Enabled = nodes[d].Enabled = denominator.Enabled = false;
|
---|
| 284 | node.Arity -= 2; // matching child + division node
|
---|
| 285 | break;
|
---|
| 286 | }
|
---|
| 287 | }
|
---|
| 288 | }
|
---|
| 289 |
|
---|
| 290 | if (node.Arity == 0) { // if everything is simplified this node becomes constant
|
---|
| 291 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
| 292 | constantTreeNode.Value = 1;
|
---|
| 293 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
| 294 | } else if (node.Arity == 1) { // when i have only 1 arg left i can skip this node
|
---|
| 295 | node.Enabled = false;
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | }
|
---|
| 299 |
|
---|
[16305] | 300 | public static void SimplifyDivision(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
[16218] | 301 | var node = nodes[i];
|
---|
| 302 | var children = nodes.IterateChildren(i);
|
---|
| 303 |
|
---|
[16305] | 304 | var tmp = nodes;
|
---|
| 305 |
|
---|
| 306 | if (children.All(x => tmp[x].Data.Symbol is Constant)) {
|
---|
[16218] | 307 | var v = ((ConstantTreeNode)nodes[children.First()].Data).Value;
|
---|
| 308 | if (node.Arity == 1) {
|
---|
| 309 | v = 1 / v;
|
---|
| 310 | } else if (node.Arity > 1) {
|
---|
| 311 | foreach (var j in children.Skip(1)) {
|
---|
| 312 | v /= ((ConstantTreeNode)nodes[j].Data).Value;
|
---|
| 313 | }
|
---|
| 314 | }
|
---|
| 315 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
| 316 | constantTreeNode.Value = v;
|
---|
| 317 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
| 318 | return;
|
---|
| 319 | }
|
---|
| 320 |
|
---|
| 321 | var nominator = nodes[children[0]];
|
---|
| 322 | foreach (var j in children.Skip(1)) {
|
---|
| 323 | var denominator = nodes[j];
|
---|
| 324 | if (nominator == denominator) {
|
---|
| 325 | // disable all the children of the division node (nominator and children + denominator and children)
|
---|
| 326 | nominator.Enabled = denominator.Enabled = false;
|
---|
| 327 | node.Arity -= 2; // nominator + denominator
|
---|
| 328 | }
|
---|
| 329 | if (node.Arity == 0) {
|
---|
| 330 | var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
|
---|
| 331 | constantTreeNode.Value = 1; // x / x = 1
|
---|
| 332 | nodes[i] = constantTreeNode.ToHashNode();
|
---|
| 333 | }
|
---|
| 334 | }
|
---|
| 335 | }
|
---|
| 336 |
|
---|
[16305] | 337 | public static void SimplifyUnaryNode(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
[16218] | 338 | // check if the child of the unary node is a constant, then the whole node can be simplified
|
---|
| 339 | var parent = nodes[i];
|
---|
| 340 | var child = nodes[i - 1];
|
---|
| 341 |
|
---|
| 342 | var parentSymbol = parent.Data.Symbol;
|
---|
| 343 | var childSymbol = child.Data.Symbol;
|
---|
| 344 |
|
---|
| 345 | if (childSymbol is Constant) {
|
---|
| 346 | nodes[i].Enabled = false;
|
---|
| 347 | } else if ((parentSymbol is Exponential && childSymbol is Logarithm) || (parentSymbol is Logarithm && childSymbol is Exponential)) {
|
---|
| 348 | child.Enabled = parent.Enabled = false;
|
---|
| 349 | }
|
---|
| 350 | }
|
---|
| 351 |
|
---|
[16305] | 352 | public static void SimplifyBinaryNode(ref HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
|
---|
[16218] | 353 | var children = nodes.IterateChildren(i);
|
---|
[16305] | 354 | var tmp = nodes;
|
---|
| 355 | if (children.All(x => tmp[x].Data.Symbol is Constant)) {
|
---|
[16218] | 356 | foreach (var j in children) {
|
---|
| 357 | nodes[j].Enabled = false;
|
---|
| 358 | }
|
---|
| 359 | nodes[i] = constant.CreateTreeNode().ToHashNode();
|
---|
| 360 | }
|
---|
| 361 | }
|
---|
| 362 | #endregion
|
---|
| 363 | }
|
---|
| 364 | }
|
---|