1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HEAL.Attic;
|
---|
29 | using HeuristicLab.Random;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
32 | [Item("DeterministicBestCrossover", "An operator which performs subtree swapping by choosing the best subtree to be swapped in a certain position:\n" +
|
---|
33 | "- Take two parent individuals P0 and P1\n" +
|
---|
34 | "- Randomly choose a crossover point C from P0\n" +
|
---|
35 | "- Test all nodes from P1 to determine the one that produces the best child when inserted at place C in P0")]
|
---|
36 | [StorableType("BC019C69-AA9D-4E98-B366-274EFD7922C4")]
|
---|
37 | public sealed class SymbolicDataAnalysisExpressionDeterministicBestCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData {
|
---|
38 | [StorableConstructor]
|
---|
39 | private SymbolicDataAnalysisExpressionDeterministicBestCrossover(StorableConstructorFlag _) : base(_) { }
|
---|
40 | private SymbolicDataAnalysisExpressionDeterministicBestCrossover(SymbolicDataAnalysisExpressionCrossover<T> original, Cloner cloner)
|
---|
41 | : base(original, cloner) {
|
---|
42 | }
|
---|
43 | public SymbolicDataAnalysisExpressionDeterministicBestCrossover()
|
---|
44 | : base() {
|
---|
45 | name = "DeterministicBestCrossover";
|
---|
46 | }
|
---|
47 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
48 | return new SymbolicDataAnalysisExpressionDeterministicBestCrossover<T>(this, cloner);
|
---|
49 | }
|
---|
50 | public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
|
---|
51 | if (this.ExecutionContext == null)
|
---|
52 | throw new InvalidOperationException("ExecutionContext not set.");
|
---|
53 | List<int> rows = GenerateRowsToEvaluate().ToList();
|
---|
54 | T problemData = ProblemDataParameter.ActualValue;
|
---|
55 | ISymbolicDataAnalysisSingleObjectiveEvaluator<T> evaluator = EvaluatorParameter.ActualValue;
|
---|
56 |
|
---|
57 | return Cross(random, parent0, parent1, this.ExecutionContext, evaluator, problemData, rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value);
|
---|
58 | }
|
---|
59 |
|
---|
60 | /// <summary>
|
---|
61 | /// Takes two parent individuals P0 and P1.
|
---|
62 | /// Randomly choose a node i from the first parent, then test all nodes j from the second parent to determine the best child that would be obtained by swapping i for j.
|
---|
63 | /// </summary>
|
---|
64 | public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, IExecutionContext context,
|
---|
65 | ISymbolicDataAnalysisSingleObjectiveEvaluator<T> evaluator, T problemData, List<int> rows, int maxDepth, int maxLength) {
|
---|
66 | var crossoverPoints0 = new List<CutPoint>();
|
---|
67 | parent0.Root.ForEachNodePostfix((n) => {
|
---|
68 | if (n.Parent != null && n.Parent != parent0.Root)
|
---|
69 | crossoverPoints0.Add(new CutPoint(n.Parent, n));
|
---|
70 | });
|
---|
71 |
|
---|
72 | CutPoint crossoverPoint0 = crossoverPoints0.SampleRandom(random);
|
---|
73 | int level = parent0.Root.GetBranchLevel(crossoverPoint0.Child);
|
---|
74 | int length = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength();
|
---|
75 |
|
---|
76 | var allowedBranches = new List<ISymbolicExpressionTreeNode>();
|
---|
77 | parent1.Root.ForEachNodePostfix((n) => {
|
---|
78 | if (n.Parent != null && n.Parent != parent1.Root) {
|
---|
79 | if (n.GetDepth() + level <= maxDepth && n.GetLength() + length <= maxLength && crossoverPoint0.IsMatchingPointType(n))
|
---|
80 | allowedBranches.Add(n);
|
---|
81 | }
|
---|
82 | });
|
---|
83 |
|
---|
84 | if (allowedBranches.Count == 0)
|
---|
85 | return parent0;
|
---|
86 |
|
---|
87 | // create symbols in order to improvize an ad-hoc tree so that the child can be evaluated
|
---|
88 | ISymbolicExpressionTreeNode selectedBranch = null;
|
---|
89 | var nodeQualities = new List<Tuple<ISymbolicExpressionTreeNode, double>>();
|
---|
90 | var originalChild = crossoverPoint0.Child;
|
---|
91 |
|
---|
92 | foreach (var node in allowedBranches) {
|
---|
93 | var parent = node.Parent;
|
---|
94 | Swap(crossoverPoint0, node); // the swap will set the nodes parent to crossoverPoint0.Parent
|
---|
95 | IExecutionContext childContext = new ExecutionContext(context, evaluator, context.Scope);
|
---|
96 | double quality = evaluator.Evaluate(childContext, parent0, problemData, rows);
|
---|
97 | Swap(crossoverPoint0, originalChild); // swap the child back (so that the next swap will not affect the currently swapped node from parent1)
|
---|
98 | nodeQualities.Add(new Tuple<ISymbolicExpressionTreeNode, double>(node, quality));
|
---|
99 | node.Parent = parent; // restore correct parent
|
---|
100 | }
|
---|
101 |
|
---|
102 | nodeQualities.Sort((a, b) => a.Item2.CompareTo(b.Item2));
|
---|
103 | selectedBranch = evaluator.Maximization ? nodeQualities.Last().Item1 : nodeQualities.First().Item1;
|
---|
104 |
|
---|
105 | // swap the node that would create the best offspring
|
---|
106 | Swap(crossoverPoint0, selectedBranch);
|
---|
107 | return parent0;
|
---|
108 | }
|
---|
109 | }
|
---|
110 | }
|
---|