[5556] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5556] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[6709] | 22 | using System;
|
---|
[5556] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[6981] | 25 | using HeuristicLab.Analysis;
|
---|
[5556] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
[16565] | 32 | using HEAL.Attic;
|
---|
[5556] | 33 |
|
---|
| 34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 35 | /// <summary>
|
---|
| 36 | /// Calculates the accumulated frequencies of variable-symbols over all trees in the population.
|
---|
| 37 | /// </summary>
|
---|
| 38 | [Item("SymbolicDataAnalysisVariableFrequencyAnalyzer", "Calculates the accumulated frequencies of variable-symbols over all trees in the population.")]
|
---|
[16565] | 39 | [StorableType("C7E9B375-6375-478F-8590-473BA567BA90")]
|
---|
[5556] | 40 | public sealed class SymbolicDataAnalysisVariableFrequencyAnalyzer : SymbolicDataAnalysisAnalyzer {
|
---|
| 41 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
| 42 | private const string AggregateLaggedVariablesParameterName = "AggregateLaggedVariables";
|
---|
[14826] | 43 | private const string AggregateFactorVariablesParameterName = "AggregateFactorVariables";
|
---|
[5748] | 44 | private const string VariableImpactsParameterName = "VariableImpacts";
|
---|
[5556] | 45 |
|
---|
| 46 | #region parameter properties
|
---|
| 47 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
| 48 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
| 49 | }
|
---|
[5748] | 50 | public ILookupParameter<DoubleMatrix> VariableImpactsParameter {
|
---|
| 51 | get { return (ILookupParameter<DoubleMatrix>)Parameters[VariableImpactsParameterName]; }
|
---|
| 52 | }
|
---|
[5556] | 53 | public IValueLookupParameter<BoolValue> AggregateLaggedVariablesParameter {
|
---|
| 54 | get { return (IValueLookupParameter<BoolValue>)Parameters[AggregateLaggedVariablesParameterName]; }
|
---|
| 55 | }
|
---|
[14826] | 56 | public IValueLookupParameter<BoolValue> AggregateFactorVariablesParameter {
|
---|
| 57 | get { return (IValueLookupParameter<BoolValue>)Parameters[AggregateFactorVariablesParameterName]; }
|
---|
| 58 | }
|
---|
[5556] | 59 | #endregion
|
---|
| 60 | #region properties
|
---|
| 61 | public BoolValue AggregateLaggedVariables {
|
---|
| 62 | get { return AggregateLaggedVariablesParameter.ActualValue; }
|
---|
[5748] | 63 | set { AggregateLaggedVariablesParameter.Value = value; }
|
---|
[5556] | 64 | }
|
---|
[14826] | 65 | public BoolValue AggregateFactorVariables {
|
---|
| 66 | get { return AggregateFactorVariablesParameter.ActualValue; }
|
---|
| 67 | set { AggregateFactorVariablesParameter.Value = value; }
|
---|
| 68 | }
|
---|
[5556] | 69 | #endregion
|
---|
| 70 | [StorableConstructor]
|
---|
[16565] | 71 | private SymbolicDataAnalysisVariableFrequencyAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
[5556] | 72 | private SymbolicDataAnalysisVariableFrequencyAnalyzer(SymbolicDataAnalysisVariableFrequencyAnalyzer original, Cloner cloner)
|
---|
| 73 | : base(original, cloner) {
|
---|
| 74 | }
|
---|
| 75 | public SymbolicDataAnalysisVariableFrequencyAnalyzer()
|
---|
| 76 | : base() {
|
---|
| 77 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The relative variable reference frequencies aggregated over all trees in the population."));
|
---|
[5748] | 78 | Parameters.Add(new LookupParameter<DoubleMatrix>(VariableImpactsParameterName, "The relative variable relevance calculated as the average relative variable frequency over the whole run."));
|
---|
[5556] | 79 | Parameters.Add(new ValueLookupParameter<BoolValue>(AggregateLaggedVariablesParameterName, "Switch that determines whether all references to a variable should be aggregated regardless of time-offsets. Turn off to analyze all variable references with different time offsets separately.", new BoolValue(true)));
|
---|
[14826] | 80 | Parameters.Add(new ValueLookupParameter<BoolValue>(AggregateFactorVariablesParameterName, "Switch that determines whether all references to factor variables should be aggregated regardless of the value. Turn off to analyze all factor variable references with different values separately.", new BoolValue(true)));
|
---|
[5556] | 81 | }
|
---|
[5748] | 82 |
|
---|
[14826] | 83 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 84 | private void AfterDeserialization() {
|
---|
| 85 | // BackwardsCompatibility3.3
|
---|
| 86 | #region Backwards compatible code, remove with 3.4
|
---|
| 87 | if (!Parameters.ContainsKey(AggregateFactorVariablesParameterName)) {
|
---|
| 88 | Parameters.Add(new ValueLookupParameter<BoolValue>(AggregateFactorVariablesParameterName, "Switch that determines whether all references to factor variables should be aggregated regardless of the value. Turn off to analyze all factor variable references with different values separately.", new BoolValue(true)));
|
---|
| 89 | }
|
---|
| 90 | #endregion
|
---|
| 91 | }
|
---|
| 92 |
|
---|
[5556] | 93 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 94 | return new SymbolicDataAnalysisVariableFrequencyAnalyzer(this, cloner);
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | public override IOperation Apply() {
|
---|
| 98 | ItemArray<ISymbolicExpressionTree> expressions = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 99 | ResultCollection results = ResultCollection;
|
---|
[5748] | 100 | DataTable datatable;
|
---|
| 101 | if (VariableFrequenciesParameter.ActualValue == null) {
|
---|
| 102 | datatable = new DataTable("Variable frequencies", "Relative frequency of variable references aggregated over the whole population.");
|
---|
| 103 | datatable.VisualProperties.XAxisTitle = "Generation";
|
---|
| 104 | datatable.VisualProperties.YAxisTitle = "Relative Variable Frequency";
|
---|
| 105 | VariableFrequenciesParameter.ActualValue = datatable;
|
---|
| 106 | results.Add(new Result("Variable frequencies", "Relative frequency of variable references aggregated over the whole population.", datatable));
|
---|
[6811] | 107 | results.Add(new Result("Variable impacts", "The relative variable relevance calculated as the average relative variable frequency over the whole run.", new DoubleMatrix()));
|
---|
[5556] | 108 | }
|
---|
| 109 |
|
---|
[5748] | 110 | datatable = VariableFrequenciesParameter.ActualValue;
|
---|
[5556] | 111 | // all rows must have the same number of values so we can just take the first
|
---|
[5748] | 112 | int numberOfValues = datatable.Rows.Select(r => r.Values.Count).DefaultIfEmpty().First();
|
---|
[5556] | 113 |
|
---|
[14826] | 114 | foreach (var pair in CalculateVariableFrequencies(expressions, AggregateLaggedVariables.Value, AggregateFactorVariables.Value)) {
|
---|
[5748] | 115 | if (!datatable.Rows.ContainsKey(pair.Key)) {
|
---|
[5556] | 116 | // initialize a new row for the variable and pad with zeros
|
---|
| 117 | DataRow row = new DataRow(pair.Key, "", Enumerable.Repeat(0.0, numberOfValues));
|
---|
| 118 | row.VisualProperties.StartIndexZero = true;
|
---|
[5748] | 119 | datatable.Rows.Add(row);
|
---|
[5556] | 120 | }
|
---|
[6709] | 121 | datatable.Rows[pair.Key].Values.Add(Math.Round(pair.Value, 3));
|
---|
[5556] | 122 | }
|
---|
| 123 |
|
---|
| 124 | // add a zero for each data row that was not modified in the previous loop
|
---|
[5748] | 125 | foreach (var row in datatable.Rows.Where(r => r.Values.Count != numberOfValues + 1))
|
---|
[5556] | 126 | row.Values.Add(0.0);
|
---|
| 127 |
|
---|
[5748] | 128 | // update variable impacts matrix
|
---|
| 129 | var orderedImpacts = (from row in datatable.Rows
|
---|
[8735] | 130 | select new { Name = row.Name, Impact = Math.Round(datatable.Rows[row.Name].Values.Average(), 3) })
|
---|
[5748] | 131 | .OrderByDescending(p => p.Impact)
|
---|
| 132 | .ToList();
|
---|
[6811] | 133 | var impacts = new DoubleMatrix();
|
---|
| 134 | var matrix = impacts as IStringConvertibleMatrix;
|
---|
[5748] | 135 | matrix.Rows = orderedImpacts.Count;
|
---|
| 136 | matrix.RowNames = orderedImpacts.Select(x => x.Name);
|
---|
| 137 | matrix.Columns = 1;
|
---|
| 138 | matrix.ColumnNames = new string[] { "Relative variable relevance" };
|
---|
| 139 | int i = 0;
|
---|
| 140 | foreach (var p in orderedImpacts) {
|
---|
| 141 | matrix.SetValue(p.Impact.ToString(), i++, 0);
|
---|
| 142 | }
|
---|
| 143 |
|
---|
[6811] | 144 | VariableImpactsParameter.ActualValue = impacts;
|
---|
| 145 | results["Variable impacts"].Value = impacts;
|
---|
[5556] | 146 | return base.Apply();
|
---|
| 147 | }
|
---|
| 148 |
|
---|
[14826] | 149 | public static IEnumerable<KeyValuePair<string, double>> CalculateVariableFrequencies(IEnumerable<ISymbolicExpressionTree> trees,
|
---|
| 150 | bool aggregateLaggedVariables = true, bool aggregateFactorVariables = true) {
|
---|
[5556] | 151 |
|
---|
[6728] | 152 | var variableFrequencies = trees
|
---|
[14826] | 153 | .SelectMany(t => GetVariableReferences(t, aggregateLaggedVariables, aggregateFactorVariables))
|
---|
[6728] | 154 | .GroupBy(pair => pair.Key, pair => pair.Value)
|
---|
| 155 | .ToDictionary(g => g.Key, g => (double)g.Sum());
|
---|
[5556] | 156 |
|
---|
[6728] | 157 | double totalNumberOfSymbols = variableFrequencies.Values.Sum();
|
---|
| 158 |
|
---|
[6981] | 159 | foreach (var pair in variableFrequencies.OrderBy(p => p.Key, new NaturalStringComparer()))
|
---|
[5556] | 160 | yield return new KeyValuePair<string, double>(pair.Key, pair.Value / totalNumberOfSymbols);
|
---|
| 161 | }
|
---|
| 162 |
|
---|
[14826] | 163 | private static IEnumerable<KeyValuePair<string, int>> GetVariableReferences(ISymbolicExpressionTree tree,
|
---|
| 164 | bool aggregateLaggedVariables = true, bool aggregateFactorVariables = true) {
|
---|
[5556] | 165 | Dictionary<string, int> references = new Dictionary<string, int>();
|
---|
| 166 | if (aggregateLaggedVariables) {
|
---|
| 167 | tree.Root.ForEachNodePrefix(node => {
|
---|
[14826] | 168 | if (node is IVariableTreeNode) {
|
---|
| 169 | var factorNode = node as BinaryFactorVariableTreeNode;
|
---|
| 170 | if (factorNode != null && !aggregateFactorVariables) {
|
---|
| 171 | IncReferenceCount(references, factorNode.VariableName + "=" + factorNode.VariableValue);
|
---|
| 172 | } else {
|
---|
| 173 | var varNode = node as IVariableTreeNode;
|
---|
| 174 | IncReferenceCount(references, varNode.VariableName);
|
---|
| 175 | }
|
---|
[5556] | 176 | }
|
---|
| 177 | });
|
---|
| 178 | } else {
|
---|
[14826] | 179 | GetVariableReferences(references, tree.Root, 0, aggregateFactorVariables);
|
---|
[5556] | 180 | }
|
---|
| 181 | return references;
|
---|
| 182 | }
|
---|
| 183 |
|
---|
[14826] | 184 | private static void GetVariableReferences(Dictionary<string, int> references, ISymbolicExpressionTreeNode node, int currentLag, bool aggregateFactorVariables) {
|
---|
| 185 | if (node is IVariableTreeNode) {
|
---|
| 186 | var laggedVarTreeNode = node as LaggedVariableTreeNode;
|
---|
| 187 | var binFactorVariableTreeNode = node as BinaryFactorVariableTreeNode;
|
---|
| 188 | var varConditionTreeNode = node as VariableConditionTreeNode;
|
---|
| 189 | if (laggedVarTreeNode != null) {
|
---|
| 190 | IncReferenceCount(references, laggedVarTreeNode.VariableName, currentLag + laggedVarTreeNode.Lag);
|
---|
| 191 | } else if (binFactorVariableTreeNode != null) {
|
---|
| 192 | if (aggregateFactorVariables) {
|
---|
| 193 | IncReferenceCount(references, binFactorVariableTreeNode.VariableName, currentLag);
|
---|
| 194 | } else {
|
---|
| 195 | IncReferenceCount(references, binFactorVariableTreeNode.VariableName + "=" + binFactorVariableTreeNode.VariableValue, currentLag);
|
---|
| 196 | }
|
---|
| 197 | } else if (varConditionTreeNode != null) {
|
---|
| 198 | IncReferenceCount(references, varConditionTreeNode.VariableName, currentLag);
|
---|
| 199 | GetVariableReferences(references, node.GetSubtree(0), currentLag, aggregateFactorVariables);
|
---|
| 200 | GetVariableReferences(references, node.GetSubtree(1), currentLag, aggregateFactorVariables);
|
---|
| 201 | } else {
|
---|
| 202 | var varNode = node as IVariableTreeNode;
|
---|
| 203 | IncReferenceCount(references, varNode.VariableName, currentLag);
|
---|
| 204 | }
|
---|
[5556] | 205 | } else if (node.Symbol is Integral) {
|
---|
| 206 | var laggedNode = node as LaggedTreeNode;
|
---|
| 207 | for (int l = laggedNode.Lag; l <= 0; l++) {
|
---|
[14826] | 208 | GetVariableReferences(references, node.GetSubtree(0), currentLag + l, aggregateFactorVariables);
|
---|
[5556] | 209 | }
|
---|
| 210 | } else if (node.Symbol is Derivative) {
|
---|
[5924] | 211 | for (int l = -4; l <= 0; l++) {
|
---|
[14826] | 212 | GetVariableReferences(references, node.GetSubtree(0), currentLag + l, aggregateFactorVariables);
|
---|
[5556] | 213 | }
|
---|
| 214 | } else if (node.Symbol is TimeLag) {
|
---|
| 215 | var laggedNode = node as LaggedTreeNode;
|
---|
[14826] | 216 | GetVariableReferences(references, node.GetSubtree(0), currentLag + laggedNode.Lag, aggregateFactorVariables);
|
---|
[5922] | 217 | } else {
|
---|
| 218 | foreach (var subtree in node.Subtrees) {
|
---|
[14826] | 219 | GetVariableReferences(references, subtree, currentLag, aggregateFactorVariables);
|
---|
[5922] | 220 | }
|
---|
[5556] | 221 | }
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | private static void IncReferenceCount(Dictionary<string, int> references, string variableName, int timeLag = 0) {
|
---|
| 225 | string referenceId = variableName +
|
---|
| 226 | (timeLag == 0 ? "" : timeLag < 0 ? "(t" + timeLag + ")" : "(t+" + timeLag + ")");
|
---|
| 227 | if (references.ContainsKey(referenceId)) {
|
---|
| 228 | references[referenceId]++;
|
---|
| 229 | } else {
|
---|
| 230 | references[referenceId] = 1;
|
---|
| 231 | }
|
---|
| 232 | }
|
---|
| 233 | }
|
---|
| 234 | }
|
---|