1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HEAL.Attic;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
30 | [Item("Pearson R² Evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic regression solution.")]
|
---|
31 | [StorableType("6FAEC6C2-C747-452A-A60D-29AE37898A90")]
|
---|
32 | public class SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
33 | [StorableConstructor]
|
---|
34 | protected SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(StorableConstructorFlag _) : base(_) { }
|
---|
35 | protected SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner)
|
---|
36 | : base(original, cloner) {
|
---|
37 | }
|
---|
38 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
39 | return new SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(this, cloner);
|
---|
40 | }
|
---|
41 |
|
---|
42 | public SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator() : base() { }
|
---|
43 |
|
---|
44 | public override bool Maximization { get { return true; } }
|
---|
45 |
|
---|
46 | public override IOperation InstrumentedApply() {
|
---|
47 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
48 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
49 |
|
---|
50 | double quality = Calculate(
|
---|
51 | solution, ProblemDataParameter.ActualValue,
|
---|
52 | rows, SymbolicDataAnalysisTreeInterpreterParameter.ActualValue,
|
---|
53 | ApplyLinearScalingParameter.ActualValue.Value,
|
---|
54 | EstimationLimitsParameter.ActualValue.Lower,
|
---|
55 | EstimationLimitsParameter.ActualValue.Upper);
|
---|
56 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
57 |
|
---|
58 | return base.InstrumentedApply();
|
---|
59 | }
|
---|
60 |
|
---|
61 | public static double Calculate(
|
---|
62 | ISymbolicExpressionTree tree,
|
---|
63 | IRegressionProblemData problemData,
|
---|
64 | IEnumerable<int> rows,
|
---|
65 | ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
66 | bool applyLinearScaling,
|
---|
67 | double lowerEstimationLimit,
|
---|
68 | double upperEstimationLimit) {
|
---|
69 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, rows);
|
---|
70 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
71 | OnlineCalculatorError errorState;
|
---|
72 |
|
---|
73 | double r;
|
---|
74 | if (applyLinearScaling) {
|
---|
75 | var rCalculator = new OnlinePearsonsRCalculator();
|
---|
76 | CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, rCalculator, problemData.Dataset.Rows);
|
---|
77 | errorState = rCalculator.ErrorState;
|
---|
78 | r = rCalculator.R;
|
---|
79 | } else {
|
---|
80 | IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
81 | r = OnlinePearsonsRCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
|
---|
82 | }
|
---|
83 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
84 | return r*r;
|
---|
85 | }
|
---|
86 |
|
---|
87 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
88 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
89 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
90 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
91 |
|
---|
92 | double r2 = Calculate(
|
---|
93 | tree, problemData, rows,
|
---|
94 | SymbolicDataAnalysisTreeInterpreterParameter.ActualValue,
|
---|
95 | ApplyLinearScalingParameter.ActualValue.Value,
|
---|
96 | EstimationLimitsParameter.ActualValue.Lower,
|
---|
97 | EstimationLimitsParameter.ActualValue.Upper);
|
---|
98 |
|
---|
99 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
100 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
101 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
102 |
|
---|
103 | return r2;
|
---|
104 | }
|
---|
105 |
|
---|
106 | public override double Evaluate(
|
---|
107 | ISymbolicExpressionTree tree,
|
---|
108 | IRegressionProblemData problemData,
|
---|
109 | IEnumerable<int> rows,
|
---|
110 | ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
111 | bool applyLinearScaling = true,
|
---|
112 | double lowerEstimationLimit = double.MinValue,
|
---|
113 | double upperEstimationLimit = double.MaxValue) {
|
---|
114 | return Calculate(
|
---|
115 | tree, problemData, rows,
|
---|
116 | interpreter, applyLinearScaling,
|
---|
117 | lowerEstimationLimit, upperEstimationLimit);
|
---|
118 | }
|
---|
119 | }
|
---|
120 | }
|
---|