Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionParameterOptimizationEvaluator.cs @ 18132

Last change on this file since 18132 was 18132, checked in by gkronber, 3 years ago

#3140: merged r18091:18131 from branch to trunk

File size: 24.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HEAL.Attic;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
30using HeuristicLab.Optimization;
31using HeuristicLab.Parameters;
32
33namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
34  [Item("Parameter Optimization Evaluator", "Calculates Pearson R² of a symbolic regression solution and optimizes the parameters used.")]
35  [StorableType("24B68851-036D-4446-BD6F-3823E9028FF4")]
36  public class SymbolicRegressionParameterOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
37    private const string ParameterOptimizationIterationsParameterName = "ParameterOptimizationIterations";
38    private const string ParameterOptimizationImprovementParameterName = "ParameterOptimizationImprovement";
39    private const string ParameterOptimizationProbabilityParameterName = "ParameterOptimizationProbability";
40    private const string ParameterOptimizationRowsPercentageParameterName = "ParameterOptimizationRowsPercentage";
41    private const string UpdateParametersInTreeParameterName = "UpdateParametersInSymbolicExpressionTree";
42    private const string UpdateVariableWeightsParameterName = "Update Variable Weights";
43
44    private const string FunctionEvaluationsResultParameterName = "Parameters Optimization Function Evaluations";
45    private const string GradientEvaluationsResultParameterName = "Parameters Optimization Gradient Evaluations";
46    private const string CountEvaluationsParameterName = "Count Function and Gradient Evaluations";
47
48    public IFixedValueParameter<IntValue> ParameterOptimizationIterationsParameter {
49      get { return (IFixedValueParameter<IntValue>)Parameters[ParameterOptimizationIterationsParameterName]; }
50    }
51    public IFixedValueParameter<DoubleValue> ParameterOptimizationImprovementParameter {
52      get { return (IFixedValueParameter<DoubleValue>)Parameters[ParameterOptimizationImprovementParameterName]; }
53    }
54    public IFixedValueParameter<PercentValue> ParameterOptimizationProbabilityParameter {
55      get { return (IFixedValueParameter<PercentValue>)Parameters[ParameterOptimizationProbabilityParameterName]; }
56    }
57    public IFixedValueParameter<PercentValue> ParameterOptimizationRowsPercentageParameter {
58      get { return (IFixedValueParameter<PercentValue>)Parameters[ParameterOptimizationRowsPercentageParameterName]; }
59    }
60    public IFixedValueParameter<BoolValue> UpdateParametersInTreeParameter {
61      get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateParametersInTreeParameterName]; }
62    }
63    public IFixedValueParameter<BoolValue> UpdateVariableWeightsParameter {
64      get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateVariableWeightsParameterName]; }
65    }
66
67    public IResultParameter<IntValue> FunctionEvaluationsResultParameter {
68      get { return (IResultParameter<IntValue>)Parameters[FunctionEvaluationsResultParameterName]; }
69    }
70    public IResultParameter<IntValue> GradientEvaluationsResultParameter {
71      get { return (IResultParameter<IntValue>)Parameters[GradientEvaluationsResultParameterName]; }
72    }
73    public IFixedValueParameter<BoolValue> CountEvaluationsParameter {
74      get { return (IFixedValueParameter<BoolValue>)Parameters[CountEvaluationsParameterName]; }
75    }
76
77
78    public IntValue ParameterOptimizationIterations {
79      get { return ParameterOptimizationIterationsParameter.Value; }
80    }
81    public DoubleValue ParameterOptimizationImprovement {
82      get { return ParameterOptimizationImprovementParameter.Value; }
83    }
84    public PercentValue ParameterOptimizationProbability {
85      get { return ParameterOptimizationProbabilityParameter.Value; }
86    }
87    public PercentValue ParameterOptimizationRowsPercentage {
88      get { return ParameterOptimizationRowsPercentageParameter.Value; }
89    }
90    public bool UpdateParametersInTree {
91      get { return UpdateParametersInTreeParameter.Value.Value; }
92      set { UpdateParametersInTreeParameter.Value.Value = value; }
93    }
94
95    public bool UpdateVariableWeights {
96      get { return UpdateVariableWeightsParameter.Value.Value; }
97      set { UpdateVariableWeightsParameter.Value.Value = value; }
98    }
99
100    public bool CountEvaluations {
101      get { return CountEvaluationsParameter.Value.Value; }
102      set { CountEvaluationsParameter.Value.Value = value; }
103    }
104
105    public override bool Maximization {
106      get { return true; }
107    }
108
109    [StorableConstructor]
110    protected SymbolicRegressionParameterOptimizationEvaluator(StorableConstructorFlag _) : base(_) { }
111    protected SymbolicRegressionParameterOptimizationEvaluator(SymbolicRegressionParameterOptimizationEvaluator original, Cloner cloner)
112      : base(original, cloner) {
113    }
114    public SymbolicRegressionParameterOptimizationEvaluator()
115      : base() {
116      Parameters.Add(new FixedValueParameter<IntValue>(ParameterOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the parameter of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10)));
117      Parameters.Add(new FixedValueParameter<DoubleValue>(ParameterOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the parameter optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0)) { Hidden = true });
118      Parameters.Add(new FixedValueParameter<PercentValue>(ParameterOptimizationProbabilityParameterName, "Determines the probability that the parameters are optimized", new PercentValue(1)));
119      Parameters.Add(new FixedValueParameter<PercentValue>(ParameterOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for parameter optimization", new PercentValue(1)));
120      Parameters.Add(new FixedValueParameter<BoolValue>(UpdateParametersInTreeParameterName, "Determines if the parameters in the tree should be overwritten by the optimized parameters.", new BoolValue(true)) { Hidden = true });
121      Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be  optimized.", new BoolValue(true)) { Hidden = true });
122
123      Parameters.Add(new FixedValueParameter<BoolValue>(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false)));
124      Parameters.Add(new ResultParameter<IntValue>(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the parameters optimization evaluator", "Results", new IntValue()));
125      Parameters.Add(new ResultParameter<IntValue>(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the parameters optimization evaluator", "Results", new IntValue()));
126    }
127
128    public override IDeepCloneable Clone(Cloner cloner) {
129      return new SymbolicRegressionParameterOptimizationEvaluator(this, cloner);
130    }
131
132    [StorableHook(HookType.AfterDeserialization)]
133    private void AfterDeserialization() {
134      if (!Parameters.ContainsKey(UpdateParametersInTreeParameterName)) {
135        if (Parameters.ContainsKey("UpdateConstantsInSymbolicExpressionTree")) {
136          Parameters.Add(new FixedValueParameter<BoolValue>(UpdateParametersInTreeParameterName, "Determines if the parameters in the tree should be overwritten by the optimized parameters.", (BoolValue)Parameters["UpdateConstantsInSymbolicExpressionTree"].ActualValue));
137          Parameters.Remove("UpdateConstantsInSymbolicExpressionTree");
138        } else {
139          Parameters.Add(new FixedValueParameter<BoolValue>(UpdateParametersInTreeParameterName, "Determines if the parameters in the tree should be overwritten by the optimized parameters.", new BoolValue(true)));
140        }
141      }
142
143      if (!Parameters.ContainsKey(UpdateVariableWeightsParameterName))
144        Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be  optimized.", new BoolValue(true)));
145
146      if (!Parameters.ContainsKey(CountEvaluationsParameterName))
147        Parameters.Add(new FixedValueParameter<BoolValue>(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false)));
148
149      if (!Parameters.ContainsKey(FunctionEvaluationsResultParameterName)) {
150        if (Parameters.ContainsKey("Constants Optimization Function Evaluations")) {
151          Parameters.Remove("Constants Optimization Function Evaluations");
152        }
153        Parameters.Add(new ResultParameter<IntValue>(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the parameters optimization evaluator", "Results", new IntValue()));
154      }
155
156      if (!Parameters.ContainsKey(GradientEvaluationsResultParameterName)) {
157        if (Parameters.ContainsKey("Constants Optimization Gradient Evaluations")) {
158          Parameters.Remove("Constants Optimization Gradient Evaluations");
159        }
160        Parameters.Add(new ResultParameter<IntValue>(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the parameters optimization evaluator", "Results", new IntValue()));
161      }
162
163      if (!Parameters.ContainsKey(ParameterOptimizationIterationsParameterName)) {
164        if (Parameters.ContainsKey("ConstantOptimizationIterations")) {
165          Parameters.Add(new FixedValueParameter<IntValue>(ParameterOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the parameter of a symbolic expression tree (0 indicates other or default stopping criterion).", (IntValue)Parameters["ConstantOptimizationIterations"].ActualValue));
166          Parameters.Remove("ConstantOptimizationIterations");
167        } else {
168          Parameters.Add(new FixedValueParameter<IntValue>(ParameterOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the parameter of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10)));
169        }
170      }
171
172      if (!Parameters.ContainsKey(ParameterOptimizationImprovementParameterName)) {
173        if (Parameters.ContainsKey("CosntantOptimizationImprovement")) {
174          Parameters.Add(new FixedValueParameter<DoubleValue>(ParameterOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the parameter optimization to continue with it (0 indicates other or default stopping criterion).",
175            (DoubleValue)Parameters["CosntantOptimizationImprovement"].ActualValue) { Hidden = true });
176          Parameters.Remove("CosntantOptimizationImprovement");
177        } else {
178          Parameters.Add(new FixedValueParameter<DoubleValue>(ParameterOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the parameter optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0)) { Hidden = true });
179        }
180      }
181
182      if (!Parameters.ContainsKey(ParameterOptimizationProbabilityParameterName)) {
183        if (Parameters.ContainsKey("ConstantOptimizationProbability")) {
184          Parameters.Add(new FixedValueParameter<PercentValue>(ParameterOptimizationProbabilityParameterName, "Determines the probability that the parameters are optimized",
185            (PercentValue)Parameters["ConstantOptimizationProbability"].ActualValue));
186          Parameters.Remove("ConstantOptimizationProbability");
187        } else {
188          Parameters.Add(new FixedValueParameter<PercentValue>(ParameterOptimizationProbabilityParameterName, "Determines the probability that the parameters are optimized", new PercentValue(1)));
189        }
190      }
191
192      if (!Parameters.ContainsKey(ParameterOptimizationRowsPercentageParameterName)) {
193        if (Parameters.ContainsKey("ConstantOptimizationRowsPercentage")) {
194          Parameters.Add(new FixedValueParameter<PercentValue>(ParameterOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for parameter optimization", (PercentValue)Parameters["ConstantOptimizationRowsPercentage"].ActualValue));
195          Parameters.Remove("ConstantOptimizationRowsPercentage");
196        } else {
197          Parameters.Add(new FixedValueParameter<PercentValue>(ParameterOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for parameter optimization", new PercentValue(1)));
198        }
199       
200      }
201    }
202
203    private static readonly object locker = new object();
204    public override IOperation InstrumentedApply() {
205      var solution = SymbolicExpressionTreeParameter.ActualValue;
206      double quality;
207      if (RandomParameter.ActualValue.NextDouble() < ParameterOptimizationProbability.Value) {
208        IEnumerable<int> parameterOptimizationRows = GenerateRowsToEvaluate(ParameterOptimizationRowsPercentage.Value);
209        var counter = new EvaluationsCounter();
210        quality = OptimizeParameters(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
211           parameterOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, ParameterOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateParametersInTree: UpdateParametersInTree, counter: counter);
212
213        if (ParameterOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
214          var evaluationRows = GenerateRowsToEvaluate();
215          quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
216        }
217
218        if (CountEvaluations) {
219          lock (locker) {
220            FunctionEvaluationsResultParameter.ActualValue.Value += counter.FunctionEvaluations;
221            GradientEvaluationsResultParameter.ActualValue.Value += counter.GradientEvaluations;
222          }
223        }
224
225      } else {
226        var evaluationRows = GenerateRowsToEvaluate();
227        quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
228      }
229      QualityParameter.ActualValue = new DoubleValue(quality);
230
231      return base.InstrumentedApply();
232    }
233
234    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
235      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
236      EstimationLimitsParameter.ExecutionContext = context;
237      ApplyLinearScalingParameter.ExecutionContext = context;
238      FunctionEvaluationsResultParameter.ExecutionContext = context;
239      GradientEvaluationsResultParameter.ExecutionContext = context;
240
241      // Pearson R² evaluator is used on purpose instead of the const-opt evaluator,
242      // because Evaluate() is used to get the quality of evolved models on
243      // different partitions of the dataset (e.g., best validation model)
244      double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
245
246      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
247      EstimationLimitsParameter.ExecutionContext = null;
248      ApplyLinearScalingParameter.ExecutionContext = null;
249      FunctionEvaluationsResultParameter.ExecutionContext = null;
250      GradientEvaluationsResultParameter.ExecutionContext = null;
251
252      return r2;
253    }
254
255    public class EvaluationsCounter {
256      public int FunctionEvaluations = 0;
257      public int GradientEvaluations = 0;
258    }
259
260    public static double OptimizeParameters(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
261      ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling,
262      int maxIterations, bool updateVariableWeights = true,
263      double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
264      bool updateParametersInTree = true, Action<double[], double, object> iterationCallback = null, EvaluationsCounter counter = null) {
265
266      // Numeric parameters in the tree become variables for parameter optimization.
267      // Variables in the tree become parameters (fixed values) for parameter optimization.
268      // For each parameter (variable in the original tree) we store the
269      // variable name, variable value (for factor vars) and lag as a DataForVariable object.
270      // A dictionary is used to find parameters
271      double[] initialParameters;
272      var parameters = new List<TreeToAutoDiffTermConverter.DataForVariable>();
273
274      TreeToAutoDiffTermConverter.ParametricFunction func;
275      TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad;
276      if (!TreeToAutoDiffTermConverter.TryConvertToAutoDiff(tree, updateVariableWeights, applyLinearScaling, out parameters, out initialParameters, out func, out func_grad))
277        throw new NotSupportedException("Could not optimize parameters of symbolic expression tree due to not supported symbols used in the tree.");
278      if (parameters.Count == 0) return 0.0; // constant expressions always have a R² of 0.0
279      var parameterEntries = parameters.ToArray(); // order of entries must be the same for x
280
281      // extract inital parameters
282      double[] c;
283      if (applyLinearScaling) {
284        c = new double[initialParameters.Length + 2];
285        c[0] = 0.0;
286        c[1] = 1.0;
287        Array.Copy(initialParameters, 0, c, 2, initialParameters.Length);
288      } else {
289        c = (double[])initialParameters.Clone();
290      }
291
292      double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
293
294      if (counter == null) counter = new EvaluationsCounter();
295      var rowEvaluationsCounter = new EvaluationsCounter();
296
297      alglib.lsfitstate state;
298      alglib.lsfitreport rep;
299      int retVal;
300
301      IDataset ds = problemData.Dataset;
302      double[,] x = new double[rows.Count(), parameters.Count];
303      int row = 0;
304      foreach (var r in rows) {
305        int col = 0;
306        foreach (var info in parameterEntries) {
307          if (ds.VariableHasType<double>(info.variableName)) {
308            x[row, col] = ds.GetDoubleValue(info.variableName, r + info.lag);
309          } else if (ds.VariableHasType<string>(info.variableName)) {
310            x[row, col] = ds.GetStringValue(info.variableName, r) == info.variableValue ? 1 : 0;
311          } else throw new InvalidProgramException("found a variable of unknown type");
312          col++;
313        }
314        row++;
315      }
316      double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
317      int n = x.GetLength(0);
318      int m = x.GetLength(1);
319      int k = c.Length;
320
321      alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(func);
322      alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(func_grad);
323      alglib.ndimensional_rep xrep = (p, f, obj) => iterationCallback(p, f, obj);
324
325      try {
326        alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state);
327        alglib.lsfitsetcond(state, 0.0, maxIterations);
328        alglib.lsfitsetxrep(state, iterationCallback != null);
329        alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, xrep, rowEvaluationsCounter);
330        alglib.lsfitresults(state, out retVal, out c, out rep);
331      } catch (ArithmeticException) {
332        return originalQuality;
333      } catch (alglib.alglibexception) {
334        return originalQuality;
335      }
336
337      counter.FunctionEvaluations += rowEvaluationsCounter.FunctionEvaluations / n;
338      counter.GradientEvaluations += rowEvaluationsCounter.GradientEvaluations / n;
339
340      //retVal == -7  => parameter optimization failed due to wrong gradient
341      //          -8  => optimizer detected  NAN / INF  in  the target
342      //                 function and/ or gradient
343      if (retVal != -7 && retVal != -8) {
344        if (applyLinearScaling) {
345          var tmp = new double[c.Length - 2];
346          Array.Copy(c, 2, tmp, 0, tmp.Length);
347          UpdateParameters(tree, tmp, updateVariableWeights);
348        } else UpdateParameters(tree, c, updateVariableWeights);
349      }
350      var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
351
352      if (!updateParametersInTree) UpdateParameters(tree, initialParameters, updateVariableWeights);
353
354      if (originalQuality - quality > 0.001 || double.IsNaN(quality)) {
355        UpdateParameters(tree, initialParameters, updateVariableWeights);
356        return originalQuality;
357      }
358      return quality;
359    }
360
361    private static void UpdateParameters(ISymbolicExpressionTree tree, double[] parameters, bool updateVariableWeights) {
362      int i = 0;
363      foreach (var node in tree.Root.IterateNodesPrefix().OfType<SymbolicExpressionTreeTerminalNode>()) {
364        NumberTreeNode numberTreeNode = node as NumberTreeNode;
365        VariableTreeNodeBase variableTreeNodeBase = node as VariableTreeNodeBase;
366        FactorVariableTreeNode factorVarTreeNode = node as FactorVariableTreeNode;
367        if (numberTreeNode != null) {
368          if (numberTreeNode.Parent.Symbol is Power
369              && numberTreeNode.Parent.GetSubtree(1) == numberTreeNode) continue; // exponents in powers are not optimizated (see TreeToAutoDiffTermConverter)
370          numberTreeNode.Value = parameters[i++];
371        } else if (updateVariableWeights && variableTreeNodeBase != null)
372          variableTreeNodeBase.Weight = parameters[i++];
373        else if (factorVarTreeNode != null) {
374          for (int j = 0; j < factorVarTreeNode.Weights.Length; j++)
375            factorVarTreeNode.Weights[j] = parameters[i++];
376        }
377      }
378    }
379
380    private static alglib.ndimensional_pfunc CreatePFunc(TreeToAutoDiffTermConverter.ParametricFunction func) {
381      return (double[] c, double[] x, ref double fx, object o) => {
382        fx = func(c, x);
383        var counter = (EvaluationsCounter)o;
384        counter.FunctionEvaluations++;
385      };
386    }
387
388    private static alglib.ndimensional_pgrad CreatePGrad(TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad) {
389      return (double[] c, double[] x, ref double fx, double[] grad, object o) => {
390        var tuple = func_grad(c, x);
391        fx = tuple.Item2;
392        Array.Copy(tuple.Item1, grad, grad.Length);
393        var counter = (EvaluationsCounter)o;
394        counter.GradientEvaluations++;
395      };
396    }
397    public static bool CanOptimizeParameters(ISymbolicExpressionTree tree) {
398      return TreeToAutoDiffTermConverter.IsCompatible(tree);
399    }
400  }
401}
Note: See TracBrowser for help on using the repository browser.