Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveProblem.cs @ 18057

Last change on this file since 18057 was 17958, checked in by gkronber, 4 years ago

#3073: refactoring ShapeConstrainedRegressionProblem as discussed with MKo and CHa

File size: 6.6 KB
RevLine 
[5618]1#region License Information
2/* HeuristicLab
[17180]3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5618]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
[12103]26using HeuristicLab.Optimization;
[5716]27using HeuristicLab.Parameters;
[16565]28using HEAL.Attic;
[5618]29
30namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
[12504]31  [Item("Symbolic Regression Problem (multi-objective)", "Represents a multi objective symbolic regression problem.")]
[16565]32  [StorableType("4A8D3658-66B3-48B4-B983-D46409045DBE")]
[12504]33  [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 110)]
[5733]34  public class SymbolicRegressionMultiObjectiveProblem : SymbolicDataAnalysisMultiObjectiveProblem<IRegressionProblemData, ISymbolicRegressionMultiObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IRegressionProblem {
[5618]35    private const double PunishmentFactor = 10;
[5685]36    private const int InitialMaximumTreeDepth = 8;
37    private const int InitialMaximumTreeLength = 25;
[5770]38    private const string EstimationLimitsParameterName = "EstimationLimits";
39    private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic regression model.";
[5618]40
[5685]41    #region parameter properties
[5770]42    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
43      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
[5685]44    }
45    #endregion
[5770]46
[5685]47    #region properties
[5770]48    public DoubleLimit EstimationLimits {
49      get { return EstimationLimitsParameter.Value; }
[5685]50    }
[5770]51
[5685]52    #endregion
[5770]53
[5618]54    [StorableConstructor]
[16565]55    protected SymbolicRegressionMultiObjectiveProblem(StorableConstructorFlag _) : base(_) { }
[8175]56    protected SymbolicRegressionMultiObjectiveProblem(SymbolicRegressionMultiObjectiveProblem original, Cloner cloner)
57      : base(original, cloner) {
58      RegisterEventHandlers();
59    }
[5618]60    public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionMultiObjectiveProblem(this, cloner); }
61
[17958]62    public SymbolicRegressionMultiObjectiveProblem() : this(new RegressionProblemData(), new SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) { }
63    public SymbolicRegressionMultiObjectiveProblem(IRegressionProblemData problemData, ISymbolicRegressionMultiObjectiveEvaluator evaluator, ISymbolicDataAnalysisSolutionCreator solutionCreator)
64      : base(problemData, evaluator, solutionCreator) {
[5847]65      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
[5685]66
[5854]67      EstimationLimitsParameter.Hidden = true;
68
[8664]69      ApplyLinearScalingParameter.Value.Value = true;
[5742]70      Maximization = new BoolArray(new bool[] { true, false });
[5685]71      MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
72      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
73
[8175]74      RegisterEventHandlers();
[6803]75      ConfigureGrammarSymbols();
[5685]76      InitializeOperators();
[5716]77      UpdateEstimationLimits();
[5618]78    }
79
[8175]80    [StorableHook(HookType.AfterDeserialization)]
81    private void AfterDeserialization() {
82      RegisterEventHandlers();
83    }
84
85    private void RegisterEventHandlers() {
86      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
87    }
88
[6803]89    private void ConfigureGrammarSymbols() {
90      var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
91      if (grammar != null) grammar.ConfigureAsDefaultRegressionGrammar();
92    }
93
[5685]94    private void InitializeOperators() {
95      Operators.Add(new SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer());
96      Operators.Add(new SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer());
[12103]97      Operators.Add(new SymbolicExpressionTreePhenotypicSimilarityCalculator());
98      Operators.Add(new SymbolicRegressionPhenotypicDiversityAnalyzer(Operators.OfType<SymbolicExpressionTreePhenotypicSimilarityCalculator>()));
[5685]99      ParameterizeOperators();
100    }
101
102    private void UpdateEstimationLimits() {
[8139]103      if (ProblemData.TrainingIndices.Any()) {
104        var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
[5618]105        var mean = targetValues.Average();
106        var range = targetValues.Max() - targetValues.Min();
[5770]107        EstimationLimits.Upper = mean + PunishmentFactor * range;
108        EstimationLimits.Lower = mean - PunishmentFactor * range;
[6754]109      } else {
110        EstimationLimits.Upper = double.MaxValue;
111        EstimationLimits.Lower = double.MinValue;
[5618]112      }
113    }
[5623]114
[5685]115    protected override void OnProblemDataChanged() {
116      base.OnProblemDataChanged();
117      UpdateEstimationLimits();
118    }
119
120    protected override void ParameterizeOperators() {
121      base.ParameterizeOperators();
[5770]122      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
123        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
124        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
125          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
126        }
[5685]127      }
[12103]128
129      foreach (var op in Operators.OfType<ISolutionSimilarityCalculator>()) {
130        op.SolutionVariableName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
131        op.QualityVariableName = Evaluator.QualitiesParameter.ActualName;
132
133        if (op is SymbolicExpressionTreePhenotypicSimilarityCalculator) {
134          var phenotypicSimilarityCalculator = (SymbolicExpressionTreePhenotypicSimilarityCalculator)op;
135          phenotypicSimilarityCalculator.ProblemData = ProblemData;
136          phenotypicSimilarityCalculator.Interpreter = SymbolicExpressionTreeInterpreter;
137        }
138      }
[5685]139    }
[5618]140  }
141}
Note: See TracBrowser for help on using the repository browser.