[17958] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HEAL.Attic;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 32 | [Item("Shape-constrained symbolic regression problem (multi-objective)", "Represents a multi-objective shape-constrained regression problem.")]
|
---|
| 33 | [StorableType("2956C66F-4B71-4A62-998F-B52C5E8C02CD")]
|
---|
| 34 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 150)]
|
---|
| 35 | public class ShapeConstrainedRegressionMultiObjectiveProblem : SymbolicDataAnalysisMultiObjectiveProblem<IRegressionProblemData, IMultiObjectiveConstraintsEvaluator, ISymbolicDataAnalysisSolutionCreator>, IRegressionProblem {
|
---|
| 36 | private const double PunishmentFactor = 10;
|
---|
| 37 | private const int InitialMaximumTreeDepth = 8;
|
---|
| 38 | private const int InitialMaximumTreeLength = 25;
|
---|
| 39 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
| 40 | private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic regression model.";
|
---|
| 41 |
|
---|
| 42 | #region parameter properties
|
---|
| 43 | public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 44 | get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
| 45 | }
|
---|
| 46 | #endregion
|
---|
| 47 |
|
---|
| 48 | #region properties
|
---|
| 49 | public DoubleLimit EstimationLimits {
|
---|
| 50 | get { return EstimationLimitsParameter.Value; }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | #endregion
|
---|
| 54 |
|
---|
| 55 | [StorableConstructor]
|
---|
| 56 | protected ShapeConstrainedRegressionMultiObjectiveProblem(StorableConstructorFlag _) : base(_) { }
|
---|
| 57 | protected ShapeConstrainedRegressionMultiObjectiveProblem(ShapeConstrainedRegressionMultiObjectiveProblem original, Cloner cloner)
|
---|
| 58 | : base(original, cloner) {
|
---|
| 59 | RegisterEventHandlers();
|
---|
| 60 | }
|
---|
| 61 | public override IDeepCloneable Clone(Cloner cloner) { return new ShapeConstrainedRegressionMultiObjectiveProblem(this, cloner); }
|
---|
| 62 |
|
---|
| 63 | public ShapeConstrainedRegressionMultiObjectiveProblem()
|
---|
| 64 | : base(new ShapeConstrainedRegressionProblemData(), new NMSEMultiObjectiveConstraintsEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
|
---|
| 65 |
|
---|
| 66 | Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
|
---|
| 67 | EstimationLimitsParameter.Hidden = true;
|
---|
| 68 |
|
---|
| 69 | ApplyLinearScalingParameter.Value.Value = true;
|
---|
| 70 | SymbolicExpressionTreeGrammarParameter.Value = new LinearScalingGrammar();
|
---|
| 71 |
|
---|
| 72 | MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
|
---|
| 73 | MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
|
---|
| 74 |
|
---|
| 75 | InitializeOperators();
|
---|
| 76 | UpdateEstimationLimits();
|
---|
| 77 | UpdateMaximization();
|
---|
| 78 | RegisterEventHandlers();
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 82 | private void AfterDeserialization() {
|
---|
| 83 | RegisterEventHandlers();
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | private void RegisterEventHandlers() {
|
---|
| 87 | Evaluator.NumConstraintsParameter.Value.ValueChanged += NumConstraintsParameter_ValueChanged;
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | protected override void OnEvaluatorChanged() {
|
---|
| 91 | base.OnEvaluatorChanged();
|
---|
| 92 | UpdateEvaluatorObjectives(); // update objectives in evaluator based ProblemData
|
---|
| 93 | Evaluator.NumConstraintsParameter.Value.ValueChanged += NumConstraintsParameter_ValueChanged;
|
---|
| 94 | }
|
---|
| 95 | protected override void OnProblemDataChanged() {
|
---|
| 96 | base.OnProblemDataChanged();
|
---|
| 97 |
|
---|
| 98 | UpdateEstimationLimits();
|
---|
| 99 | UpdateMaximization();
|
---|
| 100 | UpdateEvaluatorObjectives();
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | private void NumConstraintsParameter_ValueChanged(object sender, EventArgs e) {
|
---|
| 104 | UpdateMaximization();
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | private void UpdateMaximization() {
|
---|
| 108 | Maximization = new BoolArray(Evaluator.Maximization.ToArray());
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | private void UpdateEstimationLimits() {
|
---|
| 112 | if (ProblemData.TrainingIndices.Any()) {
|
---|
| 113 | var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
|
---|
| 114 | var mean = targetValues.Average();
|
---|
| 115 | var range = targetValues.Max() - targetValues.Min();
|
---|
| 116 | EstimationLimits.Upper = mean + PunishmentFactor * range;
|
---|
| 117 | EstimationLimits.Lower = mean - PunishmentFactor * range;
|
---|
| 118 | } else {
|
---|
| 119 | EstimationLimits.Upper = double.MaxValue;
|
---|
| 120 | EstimationLimits.Lower = double.MinValue;
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 | private void UpdateEvaluatorObjectives() {
|
---|
| 124 | if (ProblemData is ShapeConstrainedRegressionProblemData scProblemData) {
|
---|
| 125 | Evaluator.NumConstraintsParameter.Value.Value = scProblemData.ShapeConstraints.EnabledConstraints.Count();
|
---|
| 126 | } else {
|
---|
| 127 | Evaluator.NumConstraintsParameter.Value.Value = 0;
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | private void InitializeOperators() {
|
---|
| 132 | Operators.Add(new SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer());
|
---|
| 133 | Operators.Add(new SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer());
|
---|
| 134 | Operators.Add(new SymbolicExpressionTreePhenotypicSimilarityCalculator());
|
---|
| 135 | Operators.Add(new SymbolicRegressionPhenotypicDiversityAnalyzer(Operators.OfType<SymbolicExpressionTreePhenotypicSimilarityCalculator>()));
|
---|
| 136 | ParameterizeOperators();
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | protected override void ParameterizeOperators() {
|
---|
| 140 | base.ParameterizeOperators();
|
---|
| 141 | if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
|
---|
| 142 | var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
|
---|
| 143 | foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
|
---|
| 144 | op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
|
---|
| 145 | }
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 | foreach (var op in Operators.OfType<ISolutionSimilarityCalculator>()) {
|
---|
| 149 | op.SolutionVariableName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
|
---|
| 150 | op.QualityVariableName = Evaluator.QualitiesParameter.ActualName;
|
---|
| 151 |
|
---|
| 152 | if (op is SymbolicExpressionTreePhenotypicSimilarityCalculator) {
|
---|
| 153 | var phenotypicSimilarityCalculator = (SymbolicExpressionTreePhenotypicSimilarityCalculator)op;
|
---|
| 154 | phenotypicSimilarityCalculator.ProblemData = ProblemData;
|
---|
| 155 | phenotypicSimilarityCalculator.Interpreter = SymbolicExpressionTreeInterpreter;
|
---|
| 156 | }
|
---|
| 157 | }
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 |
|
---|
| 161 | public override void Load(IRegressionProblemData data) {
|
---|
| 162 | var scProblemData = new ShapeConstrainedRegressionProblemData(data.Dataset, data.AllowedInputVariables, data.TargetVariable,
|
---|
| 163 | data.TrainingPartition, data.TestPartition) {
|
---|
| 164 | Name = data.Name,
|
---|
| 165 | Description = data.Description
|
---|
| 166 | };
|
---|
| 167 |
|
---|
| 168 | base.Load(scProblemData);
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | }
|
---|