Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/PearsonRSquaredNestedTreeSizeEvaluator.cs @ 18082

Last change on this file since 18082 was 17180, checked in by swagner, 5 years ago

#2875: Removed years in copyrights

File size: 4.9 KB
RevLine 
[11407]1#region License Information
2/* HeuristicLab
[17180]3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[11407]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[12147]22using System;
[11407]23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
[16565]29using HEAL.Attic;
[11407]30
31namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
32  [Item("Pearson R² & Nested Tree size Evaluator", "Calculates the Pearson R² and the nested tree size of a symbolic regression solution.")]
[16565]33  [StorableType("37486F27-9BA0-4C89-BB2F-6823E4FB317A")]
[11883]34  public class PearsonRSquaredNestedTreeSizeEvaluator : SymbolicRegressionMultiObjectiveEvaluator {
[11407]35    [StorableConstructor]
[16565]36    protected PearsonRSquaredNestedTreeSizeEvaluator(StorableConstructorFlag _) : base(_) { }
[11883]37    protected PearsonRSquaredNestedTreeSizeEvaluator(PearsonRSquaredNestedTreeSizeEvaluator original, Cloner cloner)
[11407]38      : base(original, cloner) {
39    }
40    public override IDeepCloneable Clone(Cloner cloner) {
[11883]41      return new PearsonRSquaredNestedTreeSizeEvaluator(this, cloner);
[11407]42    }
43
[12848]44    public PearsonRSquaredNestedTreeSizeEvaluator() : base() { }
[11407]45
[13300]46    public override IEnumerable<bool> Maximization { get { return new bool[2] { true, false }; } } // maximize R² & minimize nested tree size
[11407]47
48    public override IOperation InstrumentedApply() {
49      IEnumerable<int> rows = GenerateRowsToEvaluate();
50      var solution = SymbolicExpressionTreeParameter.ActualValue;
[11883]51      var problemData = ProblemDataParameter.ActualValue;
52      var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
53      var estimationLimits = EstimationLimitsParameter.ActualValue;
54      var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
55
56      if (UseConstantOptimization) {
[13670]57        SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, solution, problemData, rows, applyLinearScaling, ConstantOptimizationIterations, updateVariableWeights: ConstantOptimizationUpdateVariableWeights,lowerEstimationLimit: estimationLimits.Lower, upperEstimationLimit: estimationLimits.Upper);
[11883]58      }
59
[12848]60      double[] qualities = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value, DecimalPlaces);
[11407]61      QualitiesParameter.ActualValue = new DoubleArray(qualities);
62      return base.InstrumentedApply();
63    }
64
[12848]65    public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling, int decimalPlaces) {
[11407]66      double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
[12848]67      if (decimalPlaces >= 0)
68        r2 = Math.Round(r2, decimalPlaces);
[13300]69      return new double[2] { r2, solution.IterateNodesPostfix().Sum(n => n.GetLength()) }; // sum of the length of the whole sub-tree for each node
[11407]70    }
71
72    public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
73      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
74      EstimationLimitsParameter.ExecutionContext = context;
75      ApplyLinearScalingParameter.ExecutionContext = context;
[13300]76      // DecimalPlaces parameter is a FixedValueParameter and doesn't need the context.
[11407]77
[13300]78      double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value, DecimalPlaces);
[11407]79
80      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
81      EstimationLimitsParameter.ExecutionContext = null;
82      ApplyLinearScalingParameter.ExecutionContext = null;
83
84      return quality;
85    }
86  }
87}
Note: See TracBrowser for help on using the repository browser.