[6656] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6656] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Drawing;
|
---|
| 25 | using System.Linq;
|
---|
| 26 | using System.Windows.Forms;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
[7122] | 28 | using HeuristicLab.Core.Views;
|
---|
[6656] | 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[6740] | 30 | using HeuristicLab.MainForm;
|
---|
[6656] | 31 | using HeuristicLab.MainForm.WindowsForms;
|
---|
| 32 |
|
---|
[7028] | 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views {
|
---|
[6656] | 34 | [View("Response Function View")]
|
---|
[7028] | 35 | [Content(typeof(ISymbolicRegressionSolution), false)]
|
---|
[7122] | 36 | public partial class SymbolicRegressionSolutionResponseFunctionView : ItemView {
|
---|
[6656] | 37 | private Dictionary<string, List<ISymbolicExpressionTreeNode>> variableNodes;
|
---|
| 38 | private ISymbolicExpressionTree clonedTree;
|
---|
| 39 | private Dictionary<string, double> medianValues;
|
---|
[7122] | 40 | public SymbolicRegressionSolutionResponseFunctionView() {
|
---|
[6656] | 41 | InitializeComponent();
|
---|
[7122] | 42 | variableNodes = new Dictionary<string, List<ISymbolicExpressionTreeNode>>();
|
---|
[6656] | 43 | medianValues = new Dictionary<string, double>();
|
---|
[7122] | 44 | Caption = "Response Function View";
|
---|
[6656] | 45 | }
|
---|
| 46 |
|
---|
[7028] | 47 | public new ISymbolicRegressionSolution Content {
|
---|
| 48 | get { return (ISymbolicRegressionSolution)base.Content; }
|
---|
[6656] | 49 | set { base.Content = value; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | protected override void RegisterContentEvents() {
|
---|
| 53 | base.RegisterContentEvents();
|
---|
| 54 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
| 55 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
| 56 | }
|
---|
| 57 | protected override void DeregisterContentEvents() {
|
---|
| 58 | base.DeregisterContentEvents();
|
---|
| 59 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
| 60 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
| 64 | OnModelChanged();
|
---|
| 65 | }
|
---|
| 66 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
| 67 | OnProblemDataChanged();
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | protected virtual void OnModelChanged() {
|
---|
| 71 | this.UpdateView();
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | protected virtual void OnProblemDataChanged() {
|
---|
| 75 | this.UpdateView();
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | protected override void OnContentChanged() {
|
---|
| 79 | base.OnContentChanged();
|
---|
| 80 | this.UpdateView();
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | private void UpdateView() {
|
---|
| 84 | if (Content != null && Content.Model != null && Content.ProblemData != null) {
|
---|
| 85 | var referencedVariables =
|
---|
| 86 | (from varNode in Content.Model.SymbolicExpressionTree.IterateNodesPrefix().OfType<VariableTreeNode>()
|
---|
| 87 | select varNode.VariableName)
|
---|
| 88 | .Distinct()
|
---|
[7122] | 89 | .OrderBy(x => x, new NaturalStringComparer())
|
---|
[6656] | 90 | .ToList();
|
---|
| 91 |
|
---|
| 92 | medianValues.Clear();
|
---|
| 93 | foreach (var variableName in referencedVariables) {
|
---|
[6740] | 94 | medianValues.Add(variableName, Content.ProblemData.Dataset.GetDoubleValues(variableName).Median());
|
---|
[6656] | 95 | }
|
---|
| 96 |
|
---|
| 97 | comboBox.Items.Clear();
|
---|
| 98 | comboBox.Items.AddRange(referencedVariables.ToArray());
|
---|
| 99 | comboBox.SelectedIndex = 0;
|
---|
| 100 | }
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | private void CreateSliders(IEnumerable<string> variableNames) {
|
---|
| 104 | flowLayoutPanel.Controls.Clear();
|
---|
| 105 |
|
---|
| 106 | foreach (var variableName in variableNames) {
|
---|
| 107 | var variableTrackbar = new VariableTrackbar(variableName,
|
---|
[6740] | 108 | Content.ProblemData.Dataset.GetDoubleValues(variableName));
|
---|
[6656] | 109 | variableTrackbar.Size = new Size(variableTrackbar.Size.Width, flowLayoutPanel.Size.Height - 23);
|
---|
| 110 | variableTrackbar.ValueChanged += TrackBarValueChanged;
|
---|
| 111 | flowLayoutPanel.Controls.Add(variableTrackbar);
|
---|
| 112 | }
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | private void TrackBarValueChanged(object sender, EventArgs e) {
|
---|
| 116 | var trackBar = (VariableTrackbar)sender;
|
---|
| 117 | string variableName = trackBar.VariableName;
|
---|
| 118 | ChangeVariableValue(variableName, trackBar.Value);
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | private void ChangeVariableValue(string variableName, double value) {
|
---|
| 122 | foreach (var constNode in variableNodes[variableName].Cast<ConstantTreeNode>())
|
---|
| 123 | constNode.Value = value;
|
---|
| 124 |
|
---|
[7028] | 125 | UpdateResponseSeries();
|
---|
[6656] | 126 | }
|
---|
| 127 |
|
---|
[7028] | 128 | private void UpdateScatterPlot() {
|
---|
[6656] | 129 | string freeVariable = (string)comboBox.SelectedItem;
|
---|
| 130 | IEnumerable<string> fixedVariables = comboBox.Items.OfType<string>()
|
---|
| 131 | .Except(new string[] { freeVariable });
|
---|
[7122] | 132 |
|
---|
[7028] | 133 | // scatter plots for subset of samples that have values near the median values for all variables
|
---|
| 134 | Func<int, bool> NearMedianValue = (r) => {
|
---|
| 135 | foreach (var fixedVar in fixedVariables) {
|
---|
| 136 | double med = medianValues[fixedVar];
|
---|
| 137 | if (!(Content.ProblemData.Dataset.GetDoubleValue(fixedVar, r) < med + 0.1 * Math.Abs(med) &&
|
---|
| 138 | Content.ProblemData.Dataset.GetDoubleValue(fixedVar, r) > med - 0.1 * Math.Abs(med)))
|
---|
| 139 | return false;
|
---|
| 140 | }
|
---|
| 141 | return true;
|
---|
| 142 | };
|
---|
[6656] | 143 |
|
---|
[8139] | 144 | var mainTrainingIndices = (from row in Content.ProblemData.TrainingIndices
|
---|
[7028] | 145 | where NearMedianValue(row)
|
---|
| 146 | select row)
|
---|
| 147 | .ToArray();
|
---|
[8139] | 148 | var mainTestIndices = (from row in Content.ProblemData.TestIndices
|
---|
[7028] | 149 | where NearMedianValue(row)
|
---|
| 150 | select row)
|
---|
| 151 | .ToArray();
|
---|
| 152 |
|
---|
[8139] | 153 | var freeVariableValues = Content.ProblemData.Dataset.GetDoubleValues(freeVariable, mainTrainingIndices).ToArray();
|
---|
[7028] | 154 | var trainingValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable,
|
---|
[8139] | 155 | mainTrainingIndices).ToArray();
|
---|
[7028] | 156 | Array.Sort(freeVariableValues, trainingValues);
|
---|
| 157 | responseChart.Series["Training Data"].Points.DataBindXY(freeVariableValues, trainingValues);
|
---|
| 158 |
|
---|
[8139] | 159 | freeVariableValues = Content.ProblemData.Dataset.GetDoubleValues(freeVariable, mainTestIndices).ToArray();
|
---|
[7028] | 160 | var testValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable,
|
---|
[8139] | 161 | mainTestIndices).ToArray();
|
---|
[7028] | 162 | Array.Sort(freeVariableValues, testValues);
|
---|
| 163 | responseChart.Series["Test Data"].Points.DataBindXY(freeVariableValues, testValues);
|
---|
| 164 |
|
---|
| 165 | // draw scatter plots of remaining values
|
---|
[8139] | 166 | freeVariableValues = Content.ProblemData.Dataset.GetDoubleValues(freeVariable, Content.ProblemData.TrainingIndices).ToArray();
|
---|
[7028] | 167 | trainingValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable,
|
---|
[8139] | 168 | Content.ProblemData.TrainingIndices).ToArray();
|
---|
[7028] | 169 | Array.Sort(freeVariableValues, trainingValues);
|
---|
| 170 | responseChart.Series["Training Data (edge)"].Points.DataBindXY(freeVariableValues, trainingValues);
|
---|
| 171 |
|
---|
[8139] | 172 | freeVariableValues = Content.ProblemData.Dataset.GetDoubleValues(freeVariable, Content.ProblemData.TestIndices).ToArray();
|
---|
[7028] | 173 | testValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable,
|
---|
[8139] | 174 | Content.ProblemData.TestIndices).ToArray();
|
---|
[7028] | 175 | Array.Sort(freeVariableValues, testValues);
|
---|
| 176 | responseChart.Series["Test Data (edge)"].Points.DataBindXY(freeVariableValues, testValues);
|
---|
| 177 |
|
---|
| 178 |
|
---|
| 179 |
|
---|
| 180 | responseChart.ChartAreas[0].AxisX.Maximum = Math.Ceiling(freeVariableValues.Max());
|
---|
| 181 | responseChart.ChartAreas[0].AxisX.Minimum = Math.Floor(freeVariableValues.Min());
|
---|
| 182 | responseChart.ChartAreas[0].AxisY.Maximum = Math.Ceiling(Math.Max(testValues.Max(), trainingValues.Max()));
|
---|
| 183 | responseChart.ChartAreas[0].AxisY.Minimum = Math.Floor(Math.Min(testValues.Min(), trainingValues.Min()));
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | private void UpdateResponseSeries() {
|
---|
| 187 | string freeVariable = (string)comboBox.SelectedItem;
|
---|
| 188 |
|
---|
[8139] | 189 | var freeVariableValues = Content.ProblemData.Dataset.GetDoubleValues(freeVariable, Content.ProblemData.TrainingIndices).ToArray();
|
---|
[6656] | 190 | var responseValues = Content.Model.Interpreter.GetSymbolicExpressionTreeValues(clonedTree,
|
---|
| 191 | Content.ProblemData.Dataset,
|
---|
[8139] | 192 | Content.ProblemData.TrainingIndices)
|
---|
[7028] | 193 | .ToArray();
|
---|
[6656] | 194 | Array.Sort(freeVariableValues, responseValues);
|
---|
| 195 | responseChart.Series["Model Response"].Points.DataBindXY(freeVariableValues, responseValues);
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | private void ComboBoxSelectedIndexChanged(object sender, EventArgs e) {
|
---|
| 199 | string freeVariable = (string)comboBox.SelectedItem;
|
---|
| 200 | IEnumerable<string> fixedVariables = comboBox.Items.OfType<string>()
|
---|
| 201 | .Except(new string[] { freeVariable });
|
---|
| 202 |
|
---|
| 203 | variableNodes.Clear();
|
---|
| 204 | clonedTree = (ISymbolicExpressionTree)Content.Model.SymbolicExpressionTree.Clone();
|
---|
| 205 |
|
---|
| 206 | foreach (var varNode in clonedTree.IterateNodesPrefix().OfType<VariableTreeNode>()) {
|
---|
| 207 | if (fixedVariables.Contains(varNode.VariableName)) {
|
---|
| 208 | if (!variableNodes.ContainsKey(varNode.VariableName))
|
---|
| 209 | variableNodes.Add(varNode.VariableName, new List<ISymbolicExpressionTreeNode>());
|
---|
| 210 |
|
---|
| 211 | int childIndex = varNode.Parent.IndexOfSubtree(varNode);
|
---|
| 212 | var replacementNode = MakeConstantTreeNode(medianValues[varNode.VariableName]);
|
---|
| 213 | var parent = varNode.Parent;
|
---|
| 214 | parent.RemoveSubtree(childIndex);
|
---|
[7028] | 215 | parent.InsertSubtree(childIndex, MakeProduct(replacementNode, varNode.Weight));
|
---|
[6656] | 216 | variableNodes[varNode.VariableName].Add(replacementNode);
|
---|
| 217 | }
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | CreateSliders(fixedVariables);
|
---|
[7028] | 221 | UpdateScatterPlot();
|
---|
| 222 | UpdateResponseSeries();
|
---|
[6656] | 223 | }
|
---|
[7028] | 224 |
|
---|
| 225 | private ISymbolicExpressionTreeNode MakeProduct(ConstantTreeNode c, double weight) {
|
---|
| 226 | var mul = new Multiplication();
|
---|
| 227 | var prod = mul.CreateTreeNode();
|
---|
| 228 | prod.AddSubtree(MakeConstantTreeNode(weight));
|
---|
| 229 | prod.AddSubtree(c);
|
---|
| 230 | return prod;
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | private ConstantTreeNode MakeConstantTreeNode(double value) {
|
---|
| 234 | Constant constant = new Constant();
|
---|
| 235 | constant.MinValue = value - 1;
|
---|
| 236 | constant.MaxValue = value + 1;
|
---|
| 237 | ConstantTreeNode constantTreeNode = (ConstantTreeNode)constant.CreateTreeNode();
|
---|
| 238 | constantTreeNode.Value = value;
|
---|
| 239 | return constantTreeNode;
|
---|
| 240 | }
|
---|
[6656] | 241 | }
|
---|
| 242 | }
|
---|