[12416] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16788] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12416] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[16788] | 25 | using HEAL.Attic;
|
---|
[12416] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
[16788] | 31 | using HeuristicLab.PluginInfrastructure;
|
---|
[12416] | 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
[16788] | 34 | [NonDiscoverableType]
|
---|
[12416] | 35 | [Item("Weighted Residuals Mean Squared Error Evaluator", @"A modified mean squared error evaluator that enables the possibility to weight residuals differently.
|
---|
[12448] | 36 | The first residual category belongs to estimated values which definitely belong to a specific class because the estimated value is located above the maximum or below the minimum of all the class values (DefiniteResidualsWeight).
|
---|
[12416] | 37 | The second residual category represents residuals which belong to the positive class whereby the estimated value is located between the positive and a negative class (PositiveClassResidualsWeight).
|
---|
[12448] | 38 | All other cases are represented by the third category (NegativeClassesResidualsWeight).
|
---|
[12449] | 39 | The weight gets multiplied to the squared error. Note that the Evaluator acts like a normal MSE-Evaluator if all the weights are set to 1.")]
|
---|
[16788] | 40 | [StorableType("A3193296-1A0F-46E2-8F43-22E2ED9CFFC5")]
|
---|
| 41 | public sealed class SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator : SymbolicClassificationSingleObjectiveEvaluator {
|
---|
[12448] | 42 | private const string DefiniteResidualsWeightParameterName = "DefiniteResidualsWeight";
|
---|
[12416] | 43 | private const string PositiveClassResidualsWeightParameterName = "PositiveClassResidualsWeight";
|
---|
[12448] | 44 | private const string NegativeClassesResidualsWeightParameterName = "NegativeClassesResidualsWeight";
|
---|
[12416] | 45 | [StorableConstructor]
|
---|
[16788] | 46 | private SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator(StorableConstructorFlag _) : base(_) { }
|
---|
| 47 | private SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator(SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator original, Cloner cloner)
|
---|
[12416] | 48 | : base(original, cloner) {
|
---|
| 49 | }
|
---|
| 50 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 51 | return new SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator(this, cloner);
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | public SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator()
|
---|
| 55 | : base() {
|
---|
[12448] | 56 | Parameters.Add(new FixedValueParameter<DoubleValue>(DefiniteResidualsWeightParameterName, "Weight of residuals which definitely belong to a specific class because the estimated values is located above the maximum or below the minimum of all the class values.", new DoubleValue(1)));
|
---|
[12416] | 57 | Parameters.Add(new FixedValueParameter<DoubleValue>(PositiveClassResidualsWeightParameterName, "Weight of residuals which belong to the positive class whereby the estimated value is located between the positive and a negative class.", new DoubleValue(1)));
|
---|
[12448] | 58 | Parameters.Add(new FixedValueParameter<DoubleValue>(NegativeClassesResidualsWeightParameterName, "Weight of residuals which are not covered by the DefiniteResidualsWeight or the PositiveClassResidualsWeight.", new DoubleValue(1)));
|
---|
[12416] | 59 | }
|
---|
| 60 |
|
---|
| 61 | #region parameter properties
|
---|
[12448] | 62 | public IFixedValueParameter<DoubleValue> DefiniteResidualsWeightParameter {
|
---|
| 63 | get { return (IFixedValueParameter<DoubleValue>)Parameters[DefiniteResidualsWeightParameterName]; }
|
---|
[12416] | 64 | }
|
---|
| 65 | public IFixedValueParameter<DoubleValue> PositiveClassResidualsWeightParameter {
|
---|
| 66 | get { return (IFixedValueParameter<DoubleValue>)Parameters[PositiveClassResidualsWeightParameterName]; }
|
---|
| 67 | }
|
---|
[12448] | 68 | public IFixedValueParameter<DoubleValue> NegativeClassesResidualsWeightParameter {
|
---|
| 69 | get { return (IFixedValueParameter<DoubleValue>)Parameters[NegativeClassesResidualsWeightParameterName]; }
|
---|
[12416] | 70 | }
|
---|
| 71 | #endregion
|
---|
| 72 |
|
---|
| 73 | #region properties
|
---|
| 74 | public override bool Maximization { get { return false; } }
|
---|
| 75 |
|
---|
[12448] | 76 | public double DefiniteResidualsWeight {
|
---|
[16788] | 77 | get { return DefiniteResidualsWeightParameter.Value.Value; }
|
---|
[12416] | 78 | }
|
---|
| 79 | public double PositiveClassResidualsWeight {
|
---|
[16788] | 80 | get { return PositiveClassResidualsWeightParameter.Value.Value; }
|
---|
[12416] | 81 | }
|
---|
[12448] | 82 | public double NegativeClassesResidualsWeight {
|
---|
[16788] | 83 | get { return NegativeClassesResidualsWeightParameter.Value.Value; }
|
---|
[12416] | 84 | }
|
---|
| 85 | #endregion
|
---|
| 86 |
|
---|
| 87 | public override IOperation InstrumentedApply() {
|
---|
| 88 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
| 89 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 90 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value,
|
---|
[12448] | 91 | DefiniteResidualsWeight, PositiveClassResidualsWeight, NegativeClassesResidualsWeight);
|
---|
[12416] | 92 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 93 | return base.InstrumentedApply();
|
---|
| 94 | }
|
---|
| 95 |
|
---|
[16788] | 96 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling,
|
---|
[12448] | 97 | double definiteResidualsWeight, double positiveClassResidualsWeight, double negativeClassesResidualsWeight) {
|
---|
[16788] | 98 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, rows);
|
---|
[12416] | 99 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 100 | OnlineCalculatorError errorState;
|
---|
| 101 |
|
---|
| 102 | double positiveClassValue = problemData.GetClassValue(problemData.PositiveClass);
|
---|
| 103 | //get class values min/max
|
---|
| 104 | double classValuesMin = problemData.ClassValues.ElementAtOrDefault(0);
|
---|
| 105 | double classValuesMax = classValuesMin;
|
---|
| 106 | foreach (double classValue in problemData.ClassValues) {
|
---|
| 107 | if (classValuesMin > classValue) classValuesMin = classValue;
|
---|
| 108 | if (classValuesMax < classValue) classValuesMax = classValue;
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | double quality;
|
---|
| 112 | if (applyLinearScaling) {
|
---|
[16788] | 113 | var calculator = new OnlineWeightedClassificationMeanSquaredErrorCalculator(positiveClassValue, classValuesMax, classValuesMin,
|
---|
[12448] | 114 | definiteResidualsWeight, positiveClassResidualsWeight, negativeClassesResidualsWeight);
|
---|
[12416] | 115 | CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, calculator, problemData.Dataset.Rows);
|
---|
| 116 | errorState = calculator.ErrorState;
|
---|
| 117 | quality = calculator.WeightedResidualsMeanSquaredError;
|
---|
| 118 | } else {
|
---|
| 119 | IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
[16788] | 120 | quality = OnlineWeightedClassificationMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, positiveClassValue, classValuesMax,
|
---|
[12448] | 121 | classValuesMin, definiteResidualsWeight, positiveClassResidualsWeight, negativeClassesResidualsWeight, out errorState);
|
---|
[12416] | 122 | }
|
---|
| 123 | if (errorState != OnlineCalculatorError.None) return Double.NaN;
|
---|
| 124 | return quality;
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
| 128 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
| 129 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
| 130 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
| 131 |
|
---|
[12448] | 132 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value, DefiniteResidualsWeight, PositiveClassResidualsWeight, NegativeClassesResidualsWeight);
|
---|
[12416] | 133 |
|
---|
| 134 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
| 135 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
| 136 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
| 137 |
|
---|
| 138 | return quality;
|
---|
| 139 | }
|
---|
| 140 | }
|
---|
| 141 | }
|
---|