[12211] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16788] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12211] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[12210] | 23 | using System.Collections.Generic;
|
---|
[12302] | 24 | using System.Linq;
|
---|
[16788] | 25 | using HEAL.Attic;
|
---|
[12210] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
[16788] | 31 | using HeuristicLab.PluginInfrastructure;
|
---|
[12210] | 32 |
|
---|
[16788] | 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 34 | [NonDiscoverableType]
|
---|
[12216] | 35 | [Item("Weighted Performance Measures Evaluator", "Calculates the quality of a symbolic classification solution based on three weighted measures(normalized mean squared error, false negative rate(1-sensitivity) and false positve rate(1-specificity)).")]
|
---|
[16788] | 36 | [StorableType("0772F316-5E12-4153-857E-8625069B4677")]
|
---|
[12210] | 37 | public class SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator : SymbolicClassificationSingleObjectiveEvaluator {
|
---|
| 38 | private const string NormalizedMeanSquaredErrorWeightingFactorParameterName = "NormalizedMeanSquaredErrorWeightingFactor";
|
---|
[12211] | 39 | private const string FalseNegativeRateWeightingFactorParameterName = "FalseNegativeRateWeightingFactor";
|
---|
| 40 | private const string FalsePositiveRateWeightingFactorParameterName = "FalsePositiveRateWeightingFactor";
|
---|
[12210] | 41 | private const string ModelCreatorParameterName = "ModelCreator";
|
---|
| 42 |
|
---|
| 43 | public override bool Maximization { get { return false; } }
|
---|
| 44 |
|
---|
| 45 | #region parameter properties
|
---|
| 46 | public IFixedValueParameter<DoubleValue> NormalizedMeanSquaredErrorWeightingFactorParameter {
|
---|
| 47 | get { return (IFixedValueParameter<DoubleValue>)Parameters[NormalizedMeanSquaredErrorWeightingFactorParameterName]; }
|
---|
| 48 | }
|
---|
[12211] | 49 | public IFixedValueParameter<DoubleValue> FalseNegativeRateWeightingFactorParameter {
|
---|
| 50 | get { return (IFixedValueParameter<DoubleValue>)Parameters[FalseNegativeRateWeightingFactorParameterName]; }
|
---|
[12210] | 51 | }
|
---|
[12211] | 52 | public IFixedValueParameter<DoubleValue> FalsePositiveRateWeightingFactorParameter {
|
---|
| 53 | get { return (IFixedValueParameter<DoubleValue>)Parameters[FalsePositiveRateWeightingFactorParameterName]; }
|
---|
[12210] | 54 | }
|
---|
[12417] | 55 | public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
|
---|
| 56 | get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
|
---|
[12210] | 57 | }
|
---|
| 58 | #endregion
|
---|
| 59 |
|
---|
[12211] | 60 | public double NormalizedMeanSquaredErrorWeightingFactor {
|
---|
[16788] | 61 | get { return NormalizedMeanSquaredErrorWeightingFactorParameter.Value.Value; }
|
---|
[12211] | 62 | }
|
---|
| 63 | public double FalseNegativeRateWeightingFactor {
|
---|
[16788] | 64 | get { return FalseNegativeRateWeightingFactorParameter.Value.Value; }
|
---|
[12211] | 65 | }
|
---|
| 66 | public double FalsePositiveRateWeightingFactor {
|
---|
[16788] | 67 | get { return FalsePositiveRateWeightingFactorParameter.Value.Value; }
|
---|
[12211] | 68 | }
|
---|
| 69 |
|
---|
[12210] | 70 | [StorableConstructor]
|
---|
[16788] | 71 | protected SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator(StorableConstructorFlag _) : base(_) { }
|
---|
[12210] | 72 | protected SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator(SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator original, Cloner cloner)
|
---|
| 73 | : base(original, cloner) {
|
---|
| 74 | }
|
---|
| 75 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 76 | return new SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator(this, cloner);
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | public SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator()
|
---|
| 80 | : base() {
|
---|
| 81 | Parameters.Add(new FixedValueParameter<DoubleValue>(NormalizedMeanSquaredErrorWeightingFactorParameterName, "The weighting factor of the normalized mean squared error.", new DoubleValue(1)));
|
---|
[12211] | 82 | Parameters.Add(new FixedValueParameter<DoubleValue>(FalseNegativeRateWeightingFactorParameterName, "The weighting factor of the false negative rate (1-sensitivity).", new DoubleValue(1)));
|
---|
| 83 | Parameters.Add(new FixedValueParameter<DoubleValue>(FalsePositiveRateWeightingFactorParameterName, "The weighting factor of the false positive rate (1-specificity).", new DoubleValue(1)));
|
---|
[12417] | 84 | Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "The model creator which is used during the evaluations."));
|
---|
[12210] | 85 | }
|
---|
| 86 |
|
---|
| 87 | public override IOperation InstrumentedApply() {
|
---|
| 88 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
[16788] | 89 | var tree = SymbolicExpressionTreeParameter.ActualValue;
|
---|
[12210] | 90 | var creator = ModelCreatorParameter.ActualValue;
|
---|
[16788] | 91 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
| 92 | var estimationLimits = EstimationLimitsParameter.ActualValue;
|
---|
| 93 | var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
|
---|
| 94 |
|
---|
| 95 |
|
---|
| 96 | double quality = Calculate(interpreter, tree, estimationLimits.Lower, estimationLimits.Upper,
|
---|
| 97 | ProblemDataParameter.ActualValue, rows, applyLinearScaling, creator, NormalizedMeanSquaredErrorWeightingFactor, FalseNegativeRateWeightingFactor, FalsePositiveRateWeightingFactor);
|
---|
[12210] | 98 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 99 | return base.InstrumentedApply();
|
---|
| 100 | }
|
---|
| 101 |
|
---|
[16788] | 102 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData,
|
---|
[12211] | 103 | IEnumerable<int> rows, bool applyLinearScaling, ISymbolicClassificationModelCreator modelCreator, double normalizedMeanSquaredErrorWeightingFactor, double falseNegativeRateWeightingFactor, double falsePositiveRateWeightingFactor) {
|
---|
[16788] | 104 | var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, rows);
|
---|
[12311] | 105 | var targetClassValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
[12302] | 106 | var boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit).ToArray();
|
---|
[12210] | 107 | OnlineCalculatorError errorState;
|
---|
| 108 | double nmse;
|
---|
[12211] | 109 |
|
---|
| 110 | //calculate performance measures
|
---|
[12210] | 111 | string positiveClassName = problemData.PositiveClass;
|
---|
[12216] | 112 | double[] classValues, thresholds;
|
---|
[12487] | 113 | IEnumerable<double> estimatedClassValues = null;
|
---|
| 114 | ISymbolicDiscriminantFunctionClassificationModel m;
|
---|
| 115 |
|
---|
[16788] | 116 | var model = modelCreator.CreateSymbolicClassificationModel(problemData.TargetVariable, tree, interpreter, lowerEstimationLimit, upperEstimationLimit);
|
---|
[12487] | 117 | if ((m = model as ISymbolicDiscriminantFunctionClassificationModel) != null) {
|
---|
| 118 | m.ThresholdCalculator.Calculate(problemData, boundedEstimatedValues, targetClassValues, out classValues, out thresholds);
|
---|
| 119 | m.SetThresholdsAndClassValues(thresholds, classValues);
|
---|
| 120 | estimatedClassValues = m.GetEstimatedClassValues(boundedEstimatedValues);
|
---|
| 121 | } else {
|
---|
| 122 | model.RecalculateModelParameters(problemData, rows);
|
---|
| 123 | estimatedClassValues = model.GetEstimatedClassValues(problemData.Dataset, rows);
|
---|
| 124 | }
|
---|
[16788] | 125 |
|
---|
[12210] | 126 | var performanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassName, problemData.GetClassValue(positiveClassName));
|
---|
[12216] | 127 | performanceCalculator.Calculate(targetClassValues, estimatedClassValues);
|
---|
[12302] | 128 | if (performanceCalculator.ErrorState != OnlineCalculatorError.None)
|
---|
[12211] | 129 | return Double.NaN;
|
---|
| 130 | double falseNegativeRate = 1 - performanceCalculator.TruePositiveRate;
|
---|
[12210] | 131 | double falsePositiveRate = performanceCalculator.FalsePositiveRate;
|
---|
| 132 |
|
---|
| 133 | if (applyLinearScaling) {
|
---|
[12302] | 134 | throw new NotSupportedException("The Weighted Performance Measures Evaluator does not suppport linear scaling!");
|
---|
[12210] | 135 | }
|
---|
[12302] | 136 | nmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(targetClassValues, boundedEstimatedValues, out errorState);
|
---|
[12210] | 137 | if (errorState != OnlineCalculatorError.None) return Double.NaN;
|
---|
[12211] | 138 | return normalizedMeanSquaredErrorWeightingFactor * nmse + falseNegativeRateWeightingFactor * falseNegativeRate + falsePositiveRateWeightingFactor * falsePositiveRate;
|
---|
[12210] | 139 | }
|
---|
| 140 |
|
---|
| 141 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
| 142 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
| 143 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
| 144 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
| 145 | ModelCreatorParameter.ExecutionContext = context;
|
---|
| 146 |
|
---|
| 147 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper,
|
---|
[12211] | 148 | problemData, rows, ApplyLinearScalingParameter.ActualValue.Value, ModelCreatorParameter.ActualValue, NormalizedMeanSquaredErrorWeightingFactorParameter.Value.Value, FalseNegativeRateWeightingFactor, FalsePositiveRateWeightingFactor);
|
---|
[12210] | 149 |
|
---|
| 150 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
| 151 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
| 152 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
| 153 | ModelCreatorParameter.ExecutionContext = null;
|
---|
| 154 |
|
---|
| 155 | return quality;
|
---|
| 156 | }
|
---|
| 157 | }
|
---|
| 158 | }
|
---|