[5557] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5557] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 25 | using HeuristicLab.Parameters;
|
---|
[16565] | 26 | using HEAL.Attic;
|
---|
[5557] | 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 29 | /// <summary>
|
---|
| 30 | /// An operator that analyzes the training best symbolic classification solution for single objective symbolic classification problems.
|
---|
| 31 | /// </summary>
|
---|
| 32 | [Item("SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic classification solution for single objective symbolic classification problems.")]
|
---|
[16565] | 33 | [StorableType("1E179E22-DD6C-4914-8FAA-AB8F7F9B7F7F")]
|
---|
[5649] | 34 | public sealed class SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer<ISymbolicClassificationSolution>,
|
---|
[8594] | 35 | ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator, ISymbolicClassificationModelCreatorOperator {
|
---|
[5649] | 36 | private const string ProblemDataParameterName = "ProblemData";
|
---|
[8594] | 37 | private const string ModelCreatorParameterName = "ModelCreator";
|
---|
[5649] | 38 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
|
---|
[5770] | 39 | private const string EstimationLimitsParameterName = "UpperEstimationLimit";
|
---|
[5649] | 40 | #region parameter properties
|
---|
| 41 | public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
|
---|
| 42 | get { return (ILookupParameter<IClassificationProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 43 | }
|
---|
[8594] | 44 | public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
|
---|
| 45 | get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
|
---|
| 46 | }
|
---|
| 47 | ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter {
|
---|
| 48 | get { return ModelCreatorParameter; }
|
---|
| 49 | }
|
---|
[5649] | 50 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
| 51 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
| 52 | }
|
---|
[5770] | 53 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 54 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
[5720] | 55 | }
|
---|
[5649] | 56 | #endregion
|
---|
[5720] | 57 |
|
---|
[8664] | 58 |
|
---|
[5557] | 59 | [StorableConstructor]
|
---|
[16565] | 60 | private SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
[5557] | 61 | private SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer(SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 62 | public SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer()
|
---|
| 63 | : base() {
|
---|
[5685] | 64 | Parameters.Add(new LookupParameter<IClassificationProblemData>(ProblemDataParameterName, "The problem data for the symbolic classification solution."));
|
---|
[8594] | 65 | Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
|
---|
[5685] | 66 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree."));
|
---|
[5770] | 67 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic classification model."));
|
---|
[5557] | 68 | }
|
---|
[8594] | 69 |
|
---|
[5557] | 70 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 71 | return new SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer(this, cloner);
|
---|
| 72 | }
|
---|
[8594] | 73 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 74 | private void AfterDeserialization() {
|
---|
[8883] | 75 | // BackwardsCompatibility3.4
|
---|
| 76 | #region Backwards compatible code, remove with 3.5
|
---|
[8594] | 77 | if (!Parameters.ContainsKey(ModelCreatorParameterName))
|
---|
| 78 | Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
|
---|
[8883] | 79 | #endregion
|
---|
[8594] | 80 | }
|
---|
[5557] | 81 |
|
---|
| 82 | protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) {
|
---|
[13941] | 83 | var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
[8972] | 84 | if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue);
|
---|
[8531] | 85 |
|
---|
[8594] | 86 | model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices);
|
---|
| 87 | return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone());
|
---|
[5557] | 88 | }
|
---|
| 89 | }
|
---|
| 90 | }
|
---|