[5557] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5557] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[17450] | 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HEAL.Attic;
|
---|
| 25 | using HeuristicLab.Analysis;
|
---|
[5557] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
[17450] | 28 | using HeuristicLab.Data;
|
---|
[5557] | 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[17450] | 30 | using HeuristicLab.Optimization;
|
---|
[5557] | 31 | using HeuristicLab.Parameters;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 34 | /// <summary>
|
---|
| 35 | /// An operator that analyzes the training best symbolic classification solution for multi objective symbolic classification problems.
|
---|
| 36 | /// </summary>
|
---|
| 37 | [Item("SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic classification solution for multi objective symbolic classification problems.")]
|
---|
[16565] | 38 | [StorableType("EC30DC99-A5A8-43B0-81C1-BA9016A0A74C")]
|
---|
[5649] | 39 | public sealed class SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer<ISymbolicClassificationSolution>,
|
---|
[8594] | 40 | ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator, ISymbolicClassificationModelCreatorOperator {
|
---|
[5649] | 41 | private const string ProblemDataParameterName = "ProblemData";
|
---|
[8594] | 42 | private const string ModelCreatorParameterName = "ModelCreator";
|
---|
[5649] | 43 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
|
---|
[5770] | 44 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
[17450] | 45 | private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
|
---|
| 46 | private const string ValidationPartitionParameterName = "ValidationPartition";
|
---|
| 47 | private const string AnalyzeTestErrorParameterName = "Analyze Test Error";
|
---|
[5770] | 48 |
|
---|
[5649] | 49 | #region parameter properties
|
---|
| 50 | public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
|
---|
| 51 | get { return (ILookupParameter<IClassificationProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 52 | }
|
---|
[8594] | 53 | public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
|
---|
| 54 | get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
|
---|
| 55 | }
|
---|
| 56 | ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter {
|
---|
| 57 | get { return ModelCreatorParameter; }
|
---|
| 58 | }
|
---|
[5649] | 59 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
| 60 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
| 61 | }
|
---|
[5770] | 62 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 63 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
[5720] | 64 | }
|
---|
[17450] | 65 | public ILookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
|
---|
| 66 | get { return (ILookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
|
---|
| 67 | }
|
---|
| 68 | public IValueLookupParameter<IntRange> ValidationPartitionParameter {
|
---|
| 69 | get { return (IValueLookupParameter<IntRange>)Parameters[ValidationPartitionParameterName]; }
|
---|
| 70 | }
|
---|
| 71 | public IFixedValueParameter<BoolValue> AnalyzeTestErrorParameter {
|
---|
| 72 | get { return (IFixedValueParameter<BoolValue>)Parameters[AnalyzeTestErrorParameterName]; }
|
---|
| 73 | }
|
---|
| 74 | public bool AnalyzeTestError {
|
---|
| 75 | get { return AnalyzeTestErrorParameter.Value.Value; }
|
---|
| 76 | set { AnalyzeTestErrorParameter.Value.Value = value; }
|
---|
| 77 | }
|
---|
[5649] | 78 | #endregion
|
---|
[5770] | 79 |
|
---|
[5557] | 80 | [StorableConstructor]
|
---|
[16565] | 81 | private SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
[5557] | 82 | private SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 83 | public SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer()
|
---|
| 84 | : base() {
|
---|
[5649] | 85 | Parameters.Add(new LookupParameter<IClassificationProblemData>(ProblemDataParameterName, "The problem data for the symbolic classification solution."));
|
---|
[8594] | 86 | Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
|
---|
[5685] | 87 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree."));
|
---|
[5770] | 88 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic classification model."));
|
---|
[17450] | 89 | Parameters.Add(new LookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "Maximal length of the symbolic expression.") { Hidden = true });
|
---|
| 90 | Parameters.Add(new ValueLookupParameter<IntRange>(ValidationPartitionParameterName, "The validation partition."));
|
---|
| 91 | Parameters.Add(new FixedValueParameter<BoolValue>(AnalyzeTestErrorParameterName, "Flag whether the test error should be displayed in the Pareto-Front", new BoolValue(false)));
|
---|
| 92 |
|
---|
[5557] | 93 | }
|
---|
| 94 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 95 | return new SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer(this, cloner);
|
---|
| 96 | }
|
---|
| 97 |
|
---|
[8594] | 98 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 99 | private void AfterDeserialization() {
|
---|
[8883] | 100 | // BackwardsCompatibility3.4
|
---|
| 101 | #region Backwards compatible code, remove with 3.5
|
---|
[8594] | 102 | if (!Parameters.ContainsKey(ModelCreatorParameterName))
|
---|
| 103 | Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
|
---|
[8883] | 104 | #endregion
|
---|
[8594] | 105 | }
|
---|
| 106 |
|
---|
[5557] | 107 | protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) {
|
---|
[13941] | 108 | var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
[8972] | 109 | if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue);
|
---|
[8531] | 110 |
|
---|
[8594] | 111 | model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices);
|
---|
| 112 | return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone());
|
---|
[5685] | 113 | }
|
---|
[17450] | 114 |
|
---|
| 115 | public override IOperation Apply() {
|
---|
| 116 | var operation = base.Apply();
|
---|
| 117 | var paretoFront = TrainingBestSolutionsParameter.ActualValue;
|
---|
| 118 |
|
---|
| 119 | IResult result;
|
---|
| 120 | ScatterPlot qualityToTreeSize;
|
---|
| 121 | if (!ResultCollection.TryGetValue("Pareto Front Analysis", out result)) {
|
---|
| 122 | qualityToTreeSize = new ScatterPlot("Quality vs Tree Size", "");
|
---|
| 123 | qualityToTreeSize.VisualProperties.XAxisMinimumAuto = false;
|
---|
| 124 | qualityToTreeSize.VisualProperties.XAxisMaximumAuto = false;
|
---|
| 125 | qualityToTreeSize.VisualProperties.YAxisMinimumAuto = false;
|
---|
| 126 | qualityToTreeSize.VisualProperties.YAxisMaximumAuto = false;
|
---|
| 127 |
|
---|
| 128 | qualityToTreeSize.VisualProperties.XAxisMinimumFixedValue = 0;
|
---|
| 129 | qualityToTreeSize.VisualProperties.XAxisMaximumFixedValue = MaximumSymbolicExpressionTreeLengthParameter.ActualValue.Value;
|
---|
| 130 | qualityToTreeSize.VisualProperties.YAxisMinimumFixedValue = 0;
|
---|
| 131 | qualityToTreeSize.VisualProperties.YAxisMaximumFixedValue = 1;
|
---|
| 132 | ResultCollection.Add(new Result("Pareto Front Analysis", qualityToTreeSize));
|
---|
| 133 | } else {
|
---|
| 134 | qualityToTreeSize = (ScatterPlot)result.Value;
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | int previousTreeLength = -1;
|
---|
| 138 | var sizeParetoFront = new LinkedList<ISymbolicClassificationSolution>();
|
---|
| 139 | foreach (var solution in paretoFront.OrderBy(s => s.Model.SymbolicExpressionTree.Length)) {
|
---|
| 140 | int treeLength = solution.Model.SymbolicExpressionTree.Length;
|
---|
| 141 | if (!sizeParetoFront.Any()) sizeParetoFront.AddLast(solution);
|
---|
| 142 | if (solution.TrainingAccuracy > sizeParetoFront.Last.Value.TrainingAccuracy) {
|
---|
| 143 | if (treeLength == previousTreeLength)
|
---|
| 144 | sizeParetoFront.RemoveLast();
|
---|
| 145 | sizeParetoFront.AddLast(solution);
|
---|
| 146 | }
|
---|
| 147 | previousTreeLength = treeLength;
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | qualityToTreeSize.Rows.Clear();
|
---|
| 151 | var trainingRow = new ScatterPlotDataRow("Training Accuracy", "", sizeParetoFront.Select(x => new Point2D<double>(x.Model.SymbolicExpressionTree.Length, x.TrainingAccuracy, x)));
|
---|
| 152 | trainingRow.VisualProperties.PointSize = 8;
|
---|
| 153 | qualityToTreeSize.Rows.Add(trainingRow);
|
---|
| 154 |
|
---|
| 155 | if (AnalyzeTestError) {
|
---|
| 156 | var testRow = new ScatterPlotDataRow("Test Accuracy", "",
|
---|
| 157 | sizeParetoFront.Select(x => new Point2D<double>(x.Model.SymbolicExpressionTree.Length, x.TestAccuracy, x)));
|
---|
| 158 | testRow.VisualProperties.PointSize = 8;
|
---|
| 159 | qualityToTreeSize.Rows.Add(testRow);
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | var validationPartition = ValidationPartitionParameter.ActualValue;
|
---|
| 163 | if (validationPartition.Size != 0) {
|
---|
| 164 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 165 | var validationIndizes = Enumerable.Range(validationPartition.Start, validationPartition.Size).ToList();
|
---|
| 166 | var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, validationIndizes).ToList();
|
---|
| 167 | OnlineCalculatorError error;
|
---|
| 168 | var validationRow = new ScatterPlotDataRow("Validation Accuracy", "",
|
---|
| 169 | sizeParetoFront.Select(x => new Point2D<double>(x.Model.SymbolicExpressionTree.Length,
|
---|
| 170 | OnlineAccuracyCalculator.Calculate(targetValues, x.GetEstimatedClassValues(validationIndizes), out error))));
|
---|
| 171 | validationRow.VisualProperties.PointSize = 7;
|
---|
| 172 | qualityToTreeSize.Rows.Add(validationRow);
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | return operation;
|
---|
| 176 | }
|
---|
[5557] | 177 | }
|
---|
| 178 | }
|
---|