Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer.cs @ 16671

Last change on this file since 16671 was 16565, checked in by gkronber, 6 years ago

#2520: merged changes from PersistenceOverhaul branch (r16451:16564) into trunk

File size: 5.7 KB
RevLine 
[5557]1#region License Information
2/* HeuristicLab
[16565]3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5557]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Common;
23using HeuristicLab.Core;
24using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
25using HeuristicLab.Parameters;
[16565]26using HEAL.Attic;
[5557]27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
29  /// <summary>
30  /// An operator that analyzes the training best symbolic classification solution for multi objective symbolic classification problems.
31  /// </summary>
32  [Item("SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic classification solution for multi objective symbolic classification problems.")]
[16565]33  [StorableType("EC30DC99-A5A8-43B0-81C1-BA9016A0A74C")]
[5649]34  public sealed class SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer<ISymbolicClassificationSolution>,
[8594]35    ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator, ISymbolicClassificationModelCreatorOperator {
[5649]36    private const string ProblemDataParameterName = "ProblemData";
[8594]37    private const string ModelCreatorParameterName = "ModelCreator";
[5649]38    private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
[5770]39    private const string EstimationLimitsParameterName = "EstimationLimits";
40
[5649]41    #region parameter properties
42    public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
43      get { return (ILookupParameter<IClassificationProblemData>)Parameters[ProblemDataParameterName]; }
44    }
[8594]45    public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
46      get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
47    }
48    ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter {
49      get { return ModelCreatorParameter; }
50    }
[5649]51    public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
52      get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
53    }
[5770]54    public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
55      get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
[5720]56    }
[5649]57    #endregion
[5770]58
[5557]59    [StorableConstructor]
[16565]60    private SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer(StorableConstructorFlag _) : base(_) { }
[5557]61    private SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
62    public SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer()
63      : base() {
[5649]64      Parameters.Add(new LookupParameter<IClassificationProblemData>(ProblemDataParameterName, "The problem data for the symbolic classification solution."));
[8594]65      Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
[5685]66      Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree."));
[5770]67      Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic classification model."));
[5557]68    }
69    public override IDeepCloneable Clone(Cloner cloner) {
70      return new SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer(this, cloner);
71    }
72
[8594]73    [StorableHook(HookType.AfterDeserialization)]
74    private void AfterDeserialization() {
[8883]75      // BackwardsCompatibility3.4
76      #region Backwards compatible code, remove with 3.5
[8594]77      if (!Parameters.ContainsKey(ModelCreatorParameterName))
78        Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
[8883]79      #endregion
[8594]80    }
81
[5557]82    protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) {
[13941]83      var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
[8972]84      if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue);
[8531]85
[8594]86      model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices);
87      return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone());
[5685]88    }
[5557]89  }
90}
Note: See TracBrowser for help on using the repository browser.