Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectivePearsonRSquaredTreeSizeEvaluator.cs @ 17564

Last change on this file since 17564 was 17180, checked in by swagner, 5 years ago

#2875: Removed years in copyrights

File size: 4.7 KB
RevLine 
[8924]1#region License Information
2/* HeuristicLab
[17180]3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[8924]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
[5505]23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
[16565]27using HEAL.Attic;
[5505]28
[5618]29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
[5505]30  [Item("Pearson R² & Tree size Evaluator", "Calculates the Pearson R² and the tree size of a symbolic classification solution.")]
[16565]31  [StorableType("3131A57B-5F87-4CAD-A0BE-E1E03D6D8276")]
[5505]32  public class SymbolicClassificationMultiObjectivePearsonRSquaredTreeSizeEvaluator : SymbolicClassificationMultiObjectiveEvaluator {
33    [StorableConstructor]
[16565]34    protected SymbolicClassificationMultiObjectivePearsonRSquaredTreeSizeEvaluator(StorableConstructorFlag _) : base(_) { }
[5505]35    protected SymbolicClassificationMultiObjectivePearsonRSquaredTreeSizeEvaluator(SymbolicClassificationMultiObjectivePearsonRSquaredTreeSizeEvaluator original, Cloner cloner)
36      : base(original, cloner) {
37    }
38    public override IDeepCloneable Clone(Cloner cloner) {
39      return new SymbolicClassificationMultiObjectivePearsonRSquaredTreeSizeEvaluator(this, cloner);
40    }
41
42    public SymbolicClassificationMultiObjectivePearsonRSquaredTreeSizeEvaluator() : base() { }
43
[5514]44    public override IEnumerable<bool> Maximization { get { return new bool[2] { true, false }; } }
45
[10291]46    public override IOperation InstrumentedApply() {
[5505]47      IEnumerable<int> rows = GenerateRowsToEvaluate();
[5851]48      var solution = SymbolicExpressionTreeParameter.ActualValue;
[8664]49      double[] qualities = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value);
[5505]50      QualitiesParameter.ActualValue = new DoubleArray(qualities);
[10291]51      return base.InstrumentedApply();
[5505]52    }
53
[8664]54    public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
[5505]55      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
[8664]56      IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
[5942]57      OnlineCalculatorError errorState;
[5894]58
[12641]59      double r;
[8664]60      if (applyLinearScaling) {
[12641]61        var rCalculator = new OnlinePearsonsRCalculator();
62        CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, rCalculator, problemData.Dataset.Rows);
63        errorState = rCalculator.ErrorState;
64        r = rCalculator.R;
[8664]65      } else {
66        IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
[12641]67        r = OnlinePearsonsRCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
[8664]68      }
69
[12641]70      if (errorState != OnlineCalculatorError.None) r = double.NaN;
71      return new double[2] { r*r, solution.Length };
[8664]72
[5505]73    }
[5613]74
75    public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable<int> rows) {
[5722]76      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
[5770]77      EstimationLimitsParameter.ExecutionContext = context;
[5722]78
[8664]79      double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
[5906]80
[5722]81      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
[5770]82      EstimationLimitsParameter.ExecutionContext = null;
[5722]83
84      return quality;
[5613]85    }
[5505]86  }
87}
Note: See TracBrowser for help on using the repository browser.