[15174] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15583] | 3 | * Copyright (C) 2002-2018 Joseph Helm and Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[15174] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Threading;
|
---|
| 26 |
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using HeuristicLab.Parameters;
|
---|
[16565] | 33 | using HEAL.Attic;
|
---|
[15174] | 34 |
|
---|
| 35 | namespace HeuristicLab.Problems.BinPacking3D {
|
---|
[16565] | 36 | [StorableType("32c0ea29-26aa-45f2-8e7f-a2d9beab75b9")]
|
---|
[15174] | 37 | public enum SortingMethod { All, Given, VolumeHeight, HeightVolume, AreaHeight, HeightArea, ClusteredAreaHeight, ClusteredHeightArea }
|
---|
[16565] | 38 |
|
---|
| 39 | [StorableType("bea57c08-7173-4cbb-915e-8c5954af3a50")]
|
---|
[15174] | 40 | public enum FittingMethod { All, FirstFit, ResidualSpaceBestFit, FreeVolumeBestFit }
|
---|
| 41 |
|
---|
[15183] | 42 | [Item("Extreme-point-based Bin Packing (3d)", "An implementation of the extreme-point based packing described in Crainic, T. G., Perboli, G., & Tadei, R. (2008). Extreme point-based heuristics for three-dimensional bin packing. Informs Journal on computing, 20(3), 368-384.")]
|
---|
[16565] | 43 | [StorableType("33F16B60-E562-4609-A6BE-A21B83BDA575")]
|
---|
[15183] | 44 | [Creatable(CreatableAttribute.Categories.SingleSolutionAlgorithms, Priority = 180)]
|
---|
[15229] | 45 | public sealed class ExtremePointAlgorithm : BasicAlgorithm {
|
---|
[15174] | 46 |
|
---|
| 47 | public override Type ProblemType {
|
---|
| 48 | get { return typeof(PermutationProblem); }
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | public new PermutationProblem Problem {
|
---|
| 52 | get { return (PermutationProblem)base.Problem; }
|
---|
| 53 | set { base.Problem = value; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public override bool SupportsPause {
|
---|
| 57 | get { return false; }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | [Storable]
|
---|
[15229] | 61 | private readonly IValueParameter<EnumValue<SortingMethod>> sortingMethodParameter;
|
---|
[15174] | 62 | public IValueParameter<EnumValue<SortingMethod>> SortingMethodParameter {
|
---|
| 63 | get { return sortingMethodParameter; }
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | [Storable]
|
---|
[15229] | 67 | private readonly IValueParameter<EnumValue<FittingMethod>> fittingMethodParameter;
|
---|
[15174] | 68 | public IValueParameter<EnumValue<FittingMethod>> FittingMethodParameter {
|
---|
| 69 | get { return fittingMethodParameter; }
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | [Storable]
|
---|
[15229] | 73 | private readonly IValueParameter<PercentValue> deltaParameter;
|
---|
[15174] | 74 | public IValueParameter<PercentValue> DeltaParameter {
|
---|
| 75 | get { return deltaParameter; }
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | [StorableConstructor]
|
---|
[16565] | 79 | private ExtremePointAlgorithm(StorableConstructorFlag _) : base(_) { }
|
---|
[15229] | 80 | private ExtremePointAlgorithm(ExtremePointAlgorithm original, Cloner cloner)
|
---|
[15174] | 81 | : base(original, cloner) {
|
---|
| 82 | sortingMethodParameter = cloner.Clone(original.sortingMethodParameter);
|
---|
| 83 | fittingMethodParameter = cloner.Clone(original.fittingMethodParameter);
|
---|
| 84 | deltaParameter = cloner.Clone(original.deltaParameter);
|
---|
| 85 | }
|
---|
| 86 | public ExtremePointAlgorithm() {
|
---|
| 87 | Parameters.Add(sortingMethodParameter = new ValueParameter<EnumValue<SortingMethod>>("SortingMethod", "In which order the items should be packed.", new EnumValue<SortingMethod>(SortingMethod.All)));
|
---|
| 88 | Parameters.Add(fittingMethodParameter = new ValueParameter<EnumValue<FittingMethod>>("FittingMethod", "Which method to fit should be used.", new EnumValue<FittingMethod>(FittingMethod.All)));
|
---|
| 89 | Parameters.Add(deltaParameter = new ValueParameter<PercentValue>("Delta", "[1;100]% Clustered sorting methods use a delta parameter to determine the clusters.", new PercentValue(.1)));
|
---|
| 90 |
|
---|
| 91 | Problem = new PermutationProblem();
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 95 | return new ExtremePointAlgorithm(this, cloner);
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 99 | private void AfterDeserialization() {
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | protected override void Run(CancellationToken token) {
|
---|
| 103 | var items = Problem.Items;
|
---|
| 104 | var bin = Problem.BinShape;
|
---|
| 105 | var sorting = new[] { SortingMethodParameter.Value.Value };
|
---|
| 106 | if (sorting[0] == SortingMethod.All) {
|
---|
| 107 | sorting = Enum.GetValues(typeof(SortingMethod)).Cast<SortingMethod>().Where(x => x != SortingMethod.All).ToArray();
|
---|
| 108 | }
|
---|
| 109 | var fitting = new[] { fittingMethodParameter.Value.Value };
|
---|
| 110 | if (fitting[0] == FittingMethod.All) {
|
---|
| 111 | fitting = Enum.GetValues(typeof(FittingMethod)).Cast<FittingMethod>().Where(x => x != FittingMethod.All).ToArray();
|
---|
| 112 | }
|
---|
| 113 | var result = GetBest(bin, items, sorting, fitting, token);
|
---|
| 114 | if (result == null) throw new InvalidOperationException("No result obtained!");
|
---|
| 115 |
|
---|
[15229] | 116 | Results.Add(new Result("Best Solution",
|
---|
| 117 | "The best found solution",
|
---|
| 118 | result.Item1));
|
---|
| 119 | Results.Add(new Result("Best Solution Quality",
|
---|
| 120 | "The quality of the best found solution according to the evaluator",
|
---|
| 121 | new DoubleValue(result.Item2)));
|
---|
[15174] | 122 |
|
---|
| 123 | var binUtil = new BinUtilizationEvaluator();
|
---|
| 124 | var packRatio = new PackingRatioEvaluator();
|
---|
[15229] | 125 | Results.Add(new Result("Best Solution Bin Count",
|
---|
| 126 | "The number of bins in the best found solution",
|
---|
| 127 | new IntValue(result.Item1.NrOfBins)));
|
---|
| 128 | Results.Add(new Result("Best Solution Bin Utilization",
|
---|
| 129 | "The utilization given in percentage as calculated by the BinUtilizationEvaluator (total used space / total available space)",
|
---|
| 130 | new PercentValue(Math.Round(binUtil.Evaluate(result.Item1), 3))));
|
---|
[15174] | 131 |
|
---|
| 132 | if (result.Item3.HasValue && sorting.Length > 1)
|
---|
[15229] | 133 | Results.Add(new Result("Best Sorting Method",
|
---|
| 134 | "The sorting method that found the best solution",
|
---|
| 135 | new EnumValue<SortingMethod>(result.Item3.Value)));
|
---|
[15174] | 136 | if (result.Item4.HasValue && fitting.Length > 1)
|
---|
[15229] | 137 | Results.Add(new Result("Best Fitting Method",
|
---|
| 138 | "The fitting method that found the best solution",
|
---|
| 139 | new EnumValue<FittingMethod>(result.Item4.Value)));
|
---|
[15174] | 140 | }
|
---|
| 141 |
|
---|
| 142 | private Tuple<Solution, double, SortingMethod?, FittingMethod?> GetBest(PackingShape bin, IList<PackingItem> items, SortingMethod[] sortings, FittingMethod[] fittings, CancellationToken token) {
|
---|
| 143 | SortingMethod? bestSorting = null;
|
---|
| 144 | FittingMethod? bestFitting = null;
|
---|
| 145 | var best = double.NaN;
|
---|
| 146 | Solution bestSolution = null;
|
---|
| 147 | foreach (var fit in fittings) {
|
---|
| 148 | foreach (var sort in sortings) {
|
---|
| 149 | var result = Optimize(bin, items, sort, fit, DeltaParameter.Value.Value, Problem.UseStackingConstraints, Problem.SolutionEvaluator, token);
|
---|
| 150 | if (double.IsNaN(result.Item2) || double.IsInfinity(result.Item2)) continue;
|
---|
| 151 | if (double.IsNaN(best)
|
---|
| 152 | || Problem.Maximization && result.Item2 > best
|
---|
| 153 | || !Problem.Maximization && result.Item2 < best) {
|
---|
| 154 | bestSolution = result.Item1;
|
---|
| 155 | best = result.Item2;
|
---|
| 156 | bestSorting = sort;
|
---|
| 157 | bestFitting = fit;
|
---|
| 158 | }
|
---|
| 159 | if (token.IsCancellationRequested) return Tuple.Create(bestSolution, best, bestSorting, bestFitting);
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | if (double.IsNaN(best)) return null;
|
---|
| 163 | return Tuple.Create(bestSolution, best, bestSorting, bestFitting);
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | private static Tuple<Solution, double> Optimize(PackingShape bin, IList<PackingItem> items, SortingMethod sorting, FittingMethod fitting, double delta, bool stackingConstraints, IEvaluator evaluator, CancellationToken token) {
|
---|
| 167 | Permutation sorted = null;
|
---|
| 168 | switch (sorting) {
|
---|
| 169 | case SortingMethod.Given:
|
---|
| 170 | sorted = new Permutation(PermutationTypes.Absolute, Enumerable.Range(0, items.Count).ToArray());
|
---|
| 171 | break;
|
---|
| 172 | case SortingMethod.VolumeHeight:
|
---|
| 173 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
| 174 | items.Select((v, i) => new { Index = i, Item = v })
|
---|
| 175 | .OrderByDescending(x => x.Item.Depth * x.Item.Width * x.Item.Height)
|
---|
| 176 | .ThenByDescending(x => x.Item.Height)
|
---|
| 177 | .Select(x => x.Index).ToArray());
|
---|
| 178 | break;
|
---|
| 179 | case SortingMethod.HeightVolume:
|
---|
| 180 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
| 181 | items.Select((v, i) => new { Index = i, Item = v })
|
---|
| 182 | .OrderByDescending(x => x.Item.Height)
|
---|
| 183 | .ThenByDescending(x => x.Item.Depth * x.Item.Width * x.Item.Height)
|
---|
| 184 | .Select(x => x.Index).ToArray());
|
---|
| 185 | break;
|
---|
| 186 | case SortingMethod.AreaHeight:
|
---|
| 187 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
| 188 | items.Select((v, i) => new { Index = i, Item = v })
|
---|
| 189 | .OrderByDescending(x => x.Item.Depth * x.Item.Width)
|
---|
| 190 | .ThenByDescending(x => x.Item.Height)
|
---|
| 191 | .Select(x => x.Index).ToArray());
|
---|
| 192 | break;
|
---|
| 193 | case SortingMethod.HeightArea:
|
---|
| 194 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
| 195 | items.Select((v, i) => new { Index = i, Item = v })
|
---|
| 196 | .OrderByDescending(x => x.Item.Height)
|
---|
| 197 | .ThenByDescending(x => x.Item.Depth * x.Item.Width)
|
---|
| 198 | .Select(x => x.Index).ToArray());
|
---|
| 199 | break;
|
---|
| 200 | case SortingMethod.ClusteredAreaHeight:
|
---|
| 201 | double clusterRange = bin.Width * bin.Depth * delta;
|
---|
| 202 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
| 203 | items.Select((v, i) => new { Index = i, Item = v, ClusterId = (int)(Math.Ceiling(v.Width * v.Depth / clusterRange)) })
|
---|
| 204 | .GroupBy(x => x.ClusterId)
|
---|
| 205 | .Select(x => new { Cluster = x.Key, Items = x.OrderByDescending(y => y.Item.Height).ToList() })
|
---|
| 206 | .OrderByDescending(x => x.Cluster)
|
---|
| 207 | .SelectMany(x => x.Items)
|
---|
| 208 | .Select(x => x.Index).ToArray());
|
---|
| 209 | break;
|
---|
| 210 | case SortingMethod.ClusteredHeightArea:
|
---|
| 211 | double clusterRange2 = bin.Height * delta;
|
---|
| 212 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
| 213 | items.Select((v, i) => new { Index = i, Item = v, ClusterId = (int)(Math.Ceiling(v.Height / clusterRange2)) })
|
---|
| 214 | .GroupBy(x => x.ClusterId)
|
---|
| 215 | .Select(x => new { Cluster = x.Key, Items = x.OrderByDescending(y => y.Item.Depth * y.Item.Width).ToList() })
|
---|
| 216 | .OrderByDescending(x => x.Cluster)
|
---|
| 217 | .SelectMany(x => x.Items)
|
---|
| 218 | .Select(x => x.Index).ToArray());
|
---|
| 219 | break;
|
---|
| 220 | default: throw new ArgumentException("Unknown sorting method: " + sorting);
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | ExtremePointPermutationDecoderBase decoder = null;
|
---|
| 224 | switch (fitting) {
|
---|
| 225 | case FittingMethod.FirstFit:
|
---|
| 226 | decoder = new ExtremePointPermutationDecoder();
|
---|
| 227 | break;
|
---|
| 228 | case FittingMethod.FreeVolumeBestFit:
|
---|
| 229 | decoder = new FreeVolumeBestFitExtremePointPermutationDecoder();
|
---|
| 230 | break;
|
---|
| 231 | case FittingMethod.ResidualSpaceBestFit:
|
---|
| 232 | decoder = new ResidualSpaceBestFitExtremePointPermutationDecoder();
|
---|
| 233 | break;
|
---|
| 234 | default: throw new ArgumentException("Unknown fitting method: " + fitting);
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | var sol = decoder.Decode(sorted, bin, items, stackingConstraints);
|
---|
| 238 | var fit = evaluator.Evaluate(sol);
|
---|
| 239 |
|
---|
| 240 | return Tuple.Create(sol, fit);
|
---|
| 241 | }
|
---|
| 242 | }
|
---|
| 243 | }
|
---|