1 | #region License Information
|
---|
2 | /* SimSharp - A .NET port of SimPy, discrete event simulation framework
|
---|
3 | Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 |
|
---|
5 | This program is free software: you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation, either version 3 of the License, or
|
---|
8 | (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | You should have received a copy of the GNU General Public License
|
---|
16 | along with this program. If not, see <http://www.gnu.org/licenses/>.*/
|
---|
17 | #endregion
|
---|
18 |
|
---|
19 | using System;
|
---|
20 | using System.Collections.Generic;
|
---|
21 | using System.IO;
|
---|
22 |
|
---|
23 | namespace SimSharp {
|
---|
24 | /// <summary>
|
---|
25 | /// Environments hold the event queues, schedule and process events.
|
---|
26 | /// </summary>
|
---|
27 | public class Environment {
|
---|
28 | private const int InitialMaxEvents = 1024;
|
---|
29 | private object locker = new object();
|
---|
30 |
|
---|
31 | /// <summary>
|
---|
32 | /// Describes the number of seconds that a logical step of 1 in the *D-API takes.
|
---|
33 | /// </summary>
|
---|
34 | protected double DefaultTimeStepSeconds { get; private set; }
|
---|
35 |
|
---|
36 | /// <summary>
|
---|
37 | /// Calculates the logical date of the simulation by the amount of default steps
|
---|
38 | /// that have passed.
|
---|
39 | /// </summary>
|
---|
40 | public double NowD {
|
---|
41 | get { return (Now - StartDate).TotalSeconds / DefaultTimeStepSeconds; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | /// <summary>
|
---|
45 | /// The current simulation time as a calendar date.
|
---|
46 | /// </summary>
|
---|
47 | public DateTime Now { get; protected set; }
|
---|
48 |
|
---|
49 | /// <summary>
|
---|
50 | /// The calendar date when the simulation started. This defaults to 1970-1-1 if
|
---|
51 | /// no other date has been specified in the overloaded constructor.
|
---|
52 | /// </summary>
|
---|
53 | public DateTime StartDate { get; protected set; }
|
---|
54 |
|
---|
55 | /// <summary>
|
---|
56 | /// The random number generator that is to be used in all events in
|
---|
57 | /// order to produce reproducible results.
|
---|
58 | /// </summary>
|
---|
59 | protected IRandom Random { get; set; }
|
---|
60 |
|
---|
61 | protected EventQueue ScheduleQ;
|
---|
62 | protected Queue<Event> Queue;
|
---|
63 | public Process ActiveProcess { get; set; }
|
---|
64 |
|
---|
65 | public TextWriter Logger { get; set; }
|
---|
66 | public int ProcessedEvents { get; protected set; }
|
---|
67 |
|
---|
68 | public Environment() : this(new DateTime(1970, 1, 1)) { }
|
---|
69 | public Environment(TimeSpan? defaultStep) : this(new DateTime(1970, 1, 1), defaultStep) { }
|
---|
70 | public Environment(int randomSeed, TimeSpan? defaultStep = null) : this(new DateTime(1970, 1, 1), randomSeed, defaultStep) { }
|
---|
71 | public Environment(DateTime initialDateTime, TimeSpan? defaultStep = null) {
|
---|
72 | DefaultTimeStepSeconds = (defaultStep ?? TimeSpan.FromSeconds(1)).Duration().TotalSeconds;
|
---|
73 | StartDate = initialDateTime;
|
---|
74 | Now = initialDateTime;
|
---|
75 | Random = new SystemRandom();
|
---|
76 | ScheduleQ = new EventQueue(InitialMaxEvents);
|
---|
77 | Queue = new Queue<Event>();
|
---|
78 | Logger = Console.Out;
|
---|
79 | }
|
---|
80 | public Environment(DateTime initialDateTime, int randomSeed, TimeSpan? defaultStep = null) {
|
---|
81 | DefaultTimeStepSeconds = (defaultStep ?? TimeSpan.FromSeconds(1)).Duration().TotalSeconds;
|
---|
82 | StartDate = initialDateTime;
|
---|
83 | Now = initialDateTime;
|
---|
84 | Random = new SystemRandom(randomSeed);
|
---|
85 | ScheduleQ = new EventQueue(InitialMaxEvents);
|
---|
86 | Queue = new Queue<Event>();
|
---|
87 | Logger = Console.Out;
|
---|
88 | }
|
---|
89 |
|
---|
90 | public double ToDouble(TimeSpan span) {
|
---|
91 | return span.TotalSeconds / DefaultTimeStepSeconds;
|
---|
92 | }
|
---|
93 |
|
---|
94 | public TimeSpan ToTimeSpan(double span) {
|
---|
95 | return TimeSpan.FromSeconds(DefaultTimeStepSeconds * span);
|
---|
96 | }
|
---|
97 |
|
---|
98 | public Process Process(IEnumerable<Event> generator) {
|
---|
99 | return new Process(this, generator);
|
---|
100 | }
|
---|
101 |
|
---|
102 | public Timeout TimeoutD(double delay) {
|
---|
103 | return Timeout(TimeSpan.FromSeconds(DefaultTimeStepSeconds * delay));
|
---|
104 | }
|
---|
105 |
|
---|
106 | public Timeout Timeout(TimeSpan delay) {
|
---|
107 | return new Timeout(this, delay);
|
---|
108 | }
|
---|
109 |
|
---|
110 | public virtual void Reset(int randomSeed) {
|
---|
111 | ProcessedEvents = 0;
|
---|
112 | Now = StartDate;
|
---|
113 | Random = new SystemRandom(randomSeed);
|
---|
114 | ScheduleQ = new EventQueue(InitialMaxEvents);
|
---|
115 | Queue = new Queue<Event>();
|
---|
116 | }
|
---|
117 |
|
---|
118 | public virtual void ScheduleD(double delay, Event @event) {
|
---|
119 | Schedule(TimeSpan.FromSeconds(DefaultTimeStepSeconds * delay), @event);
|
---|
120 | }
|
---|
121 |
|
---|
122 | public virtual void Schedule(Event @event) {
|
---|
123 | lock (locker) {
|
---|
124 | Queue.Enqueue(@event);
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | public virtual void Schedule(TimeSpan delay, Event @event) {
|
---|
129 | if (delay < TimeSpan.Zero)
|
---|
130 | throw new ArgumentException("Negative delays are not allowed in Schedule(TimeSpan, Event).");
|
---|
131 | lock (locker) {
|
---|
132 | if (delay == TimeSpan.Zero) {
|
---|
133 | Queue.Enqueue(@event);
|
---|
134 | return;
|
---|
135 | }
|
---|
136 | var eventTime = Now + delay;
|
---|
137 | DoSchedule(eventTime, @event);
|
---|
138 | }
|
---|
139 | }
|
---|
140 |
|
---|
141 | protected virtual EventQueueNode DoSchedule(DateTime date, Event @event) {
|
---|
142 | if (ScheduleQ.MaxSize == ScheduleQ.Count) {
|
---|
143 | // the capacity has to be adjusted, there are more events in the queue than anticipated
|
---|
144 | var oldSchedule = ScheduleQ;
|
---|
145 | ScheduleQ = new EventQueue(ScheduleQ.MaxSize * 2);
|
---|
146 | foreach (var e in oldSchedule) ScheduleQ.Enqueue(e.Priority, e.Event);
|
---|
147 | }
|
---|
148 | return ScheduleQ.Enqueue(date, @event);
|
---|
149 | }
|
---|
150 |
|
---|
151 | public virtual object RunD(double? until = null) {
|
---|
152 | if (!until.HasValue) return Run();
|
---|
153 | return Run(Now + TimeSpan.FromSeconds(DefaultTimeStepSeconds * until.Value));
|
---|
154 | }
|
---|
155 |
|
---|
156 | public virtual object Run(TimeSpan span) {
|
---|
157 | return Run(Now + span);
|
---|
158 | }
|
---|
159 |
|
---|
160 | public virtual object Run(DateTime until) {
|
---|
161 | if (until <= Now) throw new InvalidOperationException("Simulation end date must lie in the future.");
|
---|
162 | var stopEvent = new Event(this);
|
---|
163 | var node = DoSchedule(until, stopEvent);
|
---|
164 | // stop event is always the first to execute at the given time
|
---|
165 | node.InsertionIndex = -1;
|
---|
166 | ScheduleQ.OnNodeUpdated(node);
|
---|
167 | return Run(stopEvent);
|
---|
168 | }
|
---|
169 |
|
---|
170 | public virtual object Run(Event stopEvent = null) {
|
---|
171 | if (stopEvent != null) {
|
---|
172 | if (stopEvent.IsProcessed) return stopEvent.Value;
|
---|
173 | stopEvent.AddCallback(StopSimulation);
|
---|
174 | }
|
---|
175 |
|
---|
176 | try {
|
---|
177 | var stop = Queue.Count == 0 && ScheduleQ.Count == 0;
|
---|
178 | while (!stop) {
|
---|
179 | Step();
|
---|
180 | ProcessedEvents++;
|
---|
181 | lock (locker) {
|
---|
182 | stop = Queue.Count == 0 && ScheduleQ.Count == 0;
|
---|
183 | }
|
---|
184 | }
|
---|
185 | } catch (StopSimulationException e) { return e.Value; }
|
---|
186 | if (stopEvent == null) return null;
|
---|
187 | if (!stopEvent.IsTriggered) throw new InvalidOperationException("No scheduled events left but \"until\" event was not triggered.");
|
---|
188 | return stopEvent.Value;
|
---|
189 | }
|
---|
190 |
|
---|
191 | public virtual void Step() {
|
---|
192 | Event evt;
|
---|
193 | lock (locker) {
|
---|
194 | if (Queue.Count == 0) {
|
---|
195 | var next = ScheduleQ.Dequeue();
|
---|
196 | Now = next.Priority;
|
---|
197 | evt = next.Event;
|
---|
198 | } else evt = Queue.Dequeue();
|
---|
199 | }
|
---|
200 | evt.Process();
|
---|
201 | }
|
---|
202 |
|
---|
203 | public virtual double PeekD() {
|
---|
204 | lock (locker) {
|
---|
205 | if (Queue.Count == 0 && ScheduleQ.Count == 0) return double.MaxValue;
|
---|
206 | return (Peek() - StartDate).TotalSeconds / DefaultTimeStepSeconds;
|
---|
207 | }
|
---|
208 | }
|
---|
209 |
|
---|
210 | public virtual DateTime Peek() {
|
---|
211 | lock (locker) {
|
---|
212 | return Queue.Count > 0 ? Now : (ScheduleQ.Count > 0 ? ScheduleQ.First.Priority : DateTime.MaxValue);
|
---|
213 | }
|
---|
214 | }
|
---|
215 |
|
---|
216 | protected virtual void StopSimulation(Event @event) {
|
---|
217 | throw new StopSimulationException(@event.Value);
|
---|
218 | }
|
---|
219 |
|
---|
220 | public virtual void Log(string message, params object[] args) {
|
---|
221 | if (Logger != null)
|
---|
222 | Logger.WriteLine(message, args);
|
---|
223 | }
|
---|
224 |
|
---|
225 | #region Random number distributions
|
---|
226 | protected static readonly double NormalMagicConst = 4 * Math.Exp(-0.5) / Math.Sqrt(2.0);
|
---|
227 |
|
---|
228 | public double RandUniform(double a, double b) {
|
---|
229 | return a + (b - a) * Random.NextDouble();
|
---|
230 | }
|
---|
231 |
|
---|
232 | public TimeSpan RandUniform(TimeSpan a, TimeSpan b) {
|
---|
233 | return TimeSpan.FromSeconds(RandUniform(a.TotalSeconds, b.TotalSeconds));
|
---|
234 | }
|
---|
235 |
|
---|
236 | public double RandTriangular(double low, double high) {
|
---|
237 | var u = Random.NextDouble();
|
---|
238 | if (u > 0.5)
|
---|
239 | return high + (low - high) * Math.Sqrt(((1.0 - u) / 2));
|
---|
240 | return low + (high - low) * Math.Sqrt(u / 2);
|
---|
241 | }
|
---|
242 |
|
---|
243 | public TimeSpan RandTriangular(TimeSpan low, TimeSpan high) {
|
---|
244 | return TimeSpan.FromSeconds(RandTriangular(low.TotalSeconds, high.TotalSeconds));
|
---|
245 | }
|
---|
246 |
|
---|
247 | public double RandTriangular(double low, double high, double mode) {
|
---|
248 | var u = Random.NextDouble();
|
---|
249 | var c = (mode - low) / (high - low);
|
---|
250 | if (u > c)
|
---|
251 | return high + (low - high) * Math.Sqrt(((1.0 - u) * (1.0 - c)));
|
---|
252 | return low + (high - low) * Math.Sqrt(u * c);
|
---|
253 | }
|
---|
254 |
|
---|
255 | public TimeSpan RandTriangular(TimeSpan low, TimeSpan high, TimeSpan mode) {
|
---|
256 | return TimeSpan.FromSeconds(RandTriangular(low.TotalSeconds, high.TotalSeconds, mode.TotalSeconds));
|
---|
257 | }
|
---|
258 |
|
---|
259 | /// <summary>
|
---|
260 | /// Returns a number that is exponentially distributed given a certain mean.
|
---|
261 | /// </summary>
|
---|
262 | /// <remarks>
|
---|
263 | /// Unlike in other APIs here the mean should be given and not the lambda parameter.
|
---|
264 | /// </remarks>
|
---|
265 | /// <param name="mean">The mean(!) of the distribution is 1 / lambda.</param>
|
---|
266 | /// <returns>A number that is exponentially distributed</returns>
|
---|
267 | public double RandExponential(double mean) {
|
---|
268 | return -Math.Log(1 - Random.NextDouble()) * mean;
|
---|
269 | }
|
---|
270 |
|
---|
271 | /// <summary>
|
---|
272 | /// Returns a timespan that is exponentially distributed given a certain mean.
|
---|
273 | /// </summary>
|
---|
274 | /// <remarks>
|
---|
275 | /// Unlike in other APIs here the mean should be given and not the lambda parameter.
|
---|
276 | /// </remarks>
|
---|
277 | /// <param name="mean">The mean(!) of the distribution is 1 / lambda.</param>
|
---|
278 | /// <returns>A number that is exponentially distributed</returns>
|
---|
279 | public TimeSpan RandExponential(TimeSpan mean) {
|
---|
280 | return TimeSpan.FromSeconds(RandExponential(mean.TotalSeconds));
|
---|
281 | }
|
---|
282 |
|
---|
283 | public double RandNormal(double mu, double sigma) {
|
---|
284 | double z, zz, u1, u2;
|
---|
285 | do {
|
---|
286 | u1 = Random.NextDouble();
|
---|
287 | u2 = 1 - Random.NextDouble();
|
---|
288 | z = NormalMagicConst * (u1 - 0.5) / u2;
|
---|
289 | zz = z * z / 4.0;
|
---|
290 | } while (zz > -Math.Log(u2));
|
---|
291 | return mu + z * sigma;
|
---|
292 | }
|
---|
293 |
|
---|
294 | public TimeSpan RandNormal(TimeSpan mu, TimeSpan sigma) {
|
---|
295 | return TimeSpan.FromSeconds(RandNormal(mu.TotalSeconds, sigma.TotalSeconds));
|
---|
296 | }
|
---|
297 |
|
---|
298 | public double RandNormalPositive(double mu, double sigma) {
|
---|
299 | double val;
|
---|
300 | do {
|
---|
301 | val = RandNormal(mu, sigma);
|
---|
302 | } while (val <= 0);
|
---|
303 | return val;
|
---|
304 | }
|
---|
305 |
|
---|
306 | public TimeSpan RandNormalPositive(TimeSpan mu, TimeSpan sigma) {
|
---|
307 | return TimeSpan.FromSeconds(RandNormalPositive(mu.TotalSeconds, sigma.TotalSeconds));
|
---|
308 | }
|
---|
309 |
|
---|
310 | public double RandNormalNegative(double mu, double sigma) {
|
---|
311 | double val;
|
---|
312 | do {
|
---|
313 | val = RandNormal(mu, sigma);
|
---|
314 | } while (val >= 0);
|
---|
315 | return val;
|
---|
316 | }
|
---|
317 |
|
---|
318 | public TimeSpan RandNormalNegative(TimeSpan mu, TimeSpan sigma) {
|
---|
319 | return TimeSpan.FromSeconds(RandNormalNegative(mu.TotalSeconds, sigma.TotalSeconds));
|
---|
320 | }
|
---|
321 |
|
---|
322 | public double RandLogNormal(double mu, double sigma) {
|
---|
323 | return Math.Exp(RandNormal(mu, sigma));
|
---|
324 | }
|
---|
325 |
|
---|
326 | public TimeSpan RandLogNormal(TimeSpan mu, TimeSpan sigma) {
|
---|
327 | return TimeSpan.FromSeconds(RandLogNormal(mu.TotalSeconds, sigma.TotalSeconds));
|
---|
328 | }
|
---|
329 |
|
---|
330 | public double RandCauchy(double x0, double gamma) {
|
---|
331 | return x0 + gamma * Math.Tan(Math.PI * (Random.NextDouble() - 0.5));
|
---|
332 | }
|
---|
333 |
|
---|
334 | public TimeSpan RandCauchy(TimeSpan x0, TimeSpan gamma) {
|
---|
335 | return TimeSpan.FromSeconds(RandCauchy(x0.TotalSeconds, gamma.TotalSeconds));
|
---|
336 | }
|
---|
337 |
|
---|
338 | public double RandWeibull(double alpha, double beta) {
|
---|
339 | return alpha * Math.Pow(-Math.Log(1 - Random.NextDouble()), 1 / beta);
|
---|
340 | }
|
---|
341 |
|
---|
342 | public TimeSpan RandWeibull(TimeSpan mu, TimeSpan sigma) {
|
---|
343 | return TimeSpan.FromSeconds(RandWeibull(mu.TotalSeconds, sigma.TotalSeconds));
|
---|
344 | }
|
---|
345 | #endregion
|
---|
346 |
|
---|
347 | #region Random timeouts
|
---|
348 | public Timeout TimeoutUniformD(double a, double b) {
|
---|
349 | return new Timeout(this, ToTimeSpan(RandUniform(a, b)));
|
---|
350 | }
|
---|
351 |
|
---|
352 | public Timeout TimeoutUniform(TimeSpan a, TimeSpan b) {
|
---|
353 | return new Timeout(this, RandUniform(a, b));
|
---|
354 | }
|
---|
355 |
|
---|
356 | public Timeout TimeoutTriangularD(double low, double high) {
|
---|
357 | return new Timeout(this, ToTimeSpan(RandTriangular(low, high)));
|
---|
358 | }
|
---|
359 |
|
---|
360 | public Timeout TimeoutTriangular(TimeSpan low, TimeSpan high) {
|
---|
361 | return new Timeout(this, RandTriangular(low, high));
|
---|
362 | }
|
---|
363 |
|
---|
364 | public Timeout TimeoutTriangularD(double low, double high, double mode) {
|
---|
365 | return new Timeout(this, ToTimeSpan(RandTriangular(low, high, mode)));
|
---|
366 | }
|
---|
367 |
|
---|
368 | public Timeout TimeoutTriangular(TimeSpan low, TimeSpan high, TimeSpan mode) {
|
---|
369 | return new Timeout(this, RandTriangular(low, high, mode));
|
---|
370 | }
|
---|
371 |
|
---|
372 | public Timeout TimeoutExponentialD(double mean) {
|
---|
373 | return new Timeout(this, ToTimeSpan(RandExponential(mean)));
|
---|
374 | }
|
---|
375 |
|
---|
376 | public Timeout TimeoutExponential(TimeSpan mean) {
|
---|
377 | return new Timeout(this, RandExponential(mean));
|
---|
378 | }
|
---|
379 |
|
---|
380 | public Timeout TimeoutNormalPositiveD(double mu, double sigma) {
|
---|
381 | return new Timeout(this, ToTimeSpan(RandNormalPositive(mu, sigma)));
|
---|
382 | }
|
---|
383 |
|
---|
384 | public Timeout TimeoutNormalPositive(TimeSpan mu, TimeSpan sigma) {
|
---|
385 | return new Timeout(this, RandNormalPositive(mu, sigma));
|
---|
386 | }
|
---|
387 |
|
---|
388 | public Timeout TimeoutLogNormalD(double mu, double sigma) {
|
---|
389 | return new Timeout(this, ToTimeSpan(RandLogNormal(mu, sigma)));
|
---|
390 | }
|
---|
391 |
|
---|
392 | public Timeout TimeoutLogNormal(TimeSpan mu, TimeSpan sigma) {
|
---|
393 | return new Timeout(this, RandLogNormal(mu, sigma));
|
---|
394 | }
|
---|
395 | #endregion
|
---|
396 | }
|
---|
397 | }
|
---|