1 | /*
|
---|
2 | * log.h
|
---|
3 | * The basic idea is to exploit Pade polynomials.
|
---|
4 | * A lot of ideas were inspired by the cephes math library (by Stephen L. Moshier
|
---|
5 | * moshier@na-net.ornl.gov) as well as actual code.
|
---|
6 | * The Cephes library can be found here: http://www.netlib.org/cephes/
|
---|
7 | *
|
---|
8 | * Created on: Jun 23, 2012
|
---|
9 | * Author: Danilo Piparo, Thomas Hauth, Vincenzo Innocente
|
---|
10 | */
|
---|
11 |
|
---|
12 | /*
|
---|
13 | * VDT is free software: you can redistribute it and/or modify
|
---|
14 | * it under the terms of the GNU Lesser Public License as published by
|
---|
15 | * the Free Software Foundation, either version 3 of the License, or
|
---|
16 | * (at your option) any later version.
|
---|
17 | *
|
---|
18 | * This program is distributed in the hope that it will be useful,
|
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
21 | * GNU Lesser Public License for more details.
|
---|
22 | *
|
---|
23 | * You should have received a copy of the GNU Lesser Public License
|
---|
24 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
25 | */
|
---|
26 |
|
---|
27 | #ifndef LOG_H_
|
---|
28 | #define LOG_H_
|
---|
29 |
|
---|
30 | #include "vdtcore_common.h"
|
---|
31 | #include <limits>
|
---|
32 |
|
---|
33 | namespace vdt{
|
---|
34 |
|
---|
35 | // local namespace for the constants/functions which are necessary only here
|
---|
36 | namespace details{
|
---|
37 |
|
---|
38 | const double LOG_UPPER_LIMIT = 1e307;
|
---|
39 | const double LOG_LOWER_LIMIT = 0;
|
---|
40 |
|
---|
41 | const double SQRTH = 0.70710678118654752440;
|
---|
42 |
|
---|
43 | inline double get_log_px(const double x){
|
---|
44 | const double PX1log = 1.01875663804580931796E-4;
|
---|
45 | const double PX2log = 4.97494994976747001425E-1;
|
---|
46 | const double PX3log = 4.70579119878881725854E0;
|
---|
47 | const double PX4log = 1.44989225341610930846E1;
|
---|
48 | const double PX5log = 1.79368678507819816313E1;
|
---|
49 | const double PX6log = 7.70838733755885391666E0;
|
---|
50 |
|
---|
51 | double px = PX1log;
|
---|
52 | px *= x;
|
---|
53 | px += PX2log;
|
---|
54 | px *= x;
|
---|
55 | px += PX3log;
|
---|
56 | px *= x;
|
---|
57 | px += PX4log;
|
---|
58 | px *= x;
|
---|
59 | px += PX5log;
|
---|
60 | px *= x;
|
---|
61 | px += PX6log;
|
---|
62 | return px;
|
---|
63 |
|
---|
64 | }
|
---|
65 |
|
---|
66 | inline double get_log_qx(const double x){
|
---|
67 | const double QX1log = 1.12873587189167450590E1;
|
---|
68 | const double QX2log = 4.52279145837532221105E1;
|
---|
69 | const double QX3log = 8.29875266912776603211E1;
|
---|
70 | const double QX4log = 7.11544750618563894466E1;
|
---|
71 | const double QX5log = 2.31251620126765340583E1;
|
---|
72 |
|
---|
73 | double qx = x;
|
---|
74 | qx += QX1log;
|
---|
75 | qx *=x;
|
---|
76 | qx += QX2log;
|
---|
77 | qx *=x;
|
---|
78 | qx += QX3log;
|
---|
79 | qx *=x;
|
---|
80 | qx += QX4log;
|
---|
81 | qx *=x;
|
---|
82 | qx += QX5log;
|
---|
83 | return qx;
|
---|
84 | }
|
---|
85 |
|
---|
86 | }
|
---|
87 |
|
---|
88 | // Log double precision --------------------------------------------------------
|
---|
89 | inline double fast_log(double x){
|
---|
90 |
|
---|
91 | const double original_x = x;
|
---|
92 |
|
---|
93 | /* separate mantissa from exponent */
|
---|
94 | double fe;
|
---|
95 | x = details::getMantExponent(x,fe);
|
---|
96 |
|
---|
97 | // blending
|
---|
98 | x > details::SQRTH? fe+=1. : x+=x ;
|
---|
99 | x -= 1.0;
|
---|
100 |
|
---|
101 | /* rational form */
|
---|
102 | double px = details::get_log_px(x);
|
---|
103 |
|
---|
104 | //for the final formula
|
---|
105 | const double x2 = x*x;
|
---|
106 | px *= x;
|
---|
107 | px *= x2;
|
---|
108 |
|
---|
109 | const double qx = details::get_log_qx(x);
|
---|
110 |
|
---|
111 | double res = px / qx ;
|
---|
112 |
|
---|
113 | res -= fe * 2.121944400546905827679e-4;
|
---|
114 | res -= 0.5 * x2 ;
|
---|
115 |
|
---|
116 | res = x + res;
|
---|
117 | res += fe * 0.693359375;
|
---|
118 |
|
---|
119 | if (original_x > details::LOG_UPPER_LIMIT)
|
---|
120 | res = std::numeric_limits<double>::infinity();
|
---|
121 | if (original_x < details::LOG_LOWER_LIMIT) // THIS IS NAN!
|
---|
122 | res = - std::numeric_limits<double>::quiet_NaN();
|
---|
123 |
|
---|
124 | return res;
|
---|
125 |
|
---|
126 | }
|
---|
127 |
|
---|
128 | // Log single precision --------------------------------------------------------
|
---|
129 |
|
---|
130 |
|
---|
131 |
|
---|
132 | namespace details{
|
---|
133 |
|
---|
134 | const float LOGF_UPPER_LIMIT = MAXNUMF;
|
---|
135 | const float LOGF_LOWER_LIMIT = 0;
|
---|
136 |
|
---|
137 | const float PX1logf = 7.0376836292E-2f;
|
---|
138 | const float PX2logf = -1.1514610310E-1f;
|
---|
139 | const float PX3logf = 1.1676998740E-1f;
|
---|
140 | const float PX4logf = -1.2420140846E-1f;
|
---|
141 | const float PX5logf = 1.4249322787E-1f;
|
---|
142 | const float PX6logf = -1.6668057665E-1f;
|
---|
143 | const float PX7logf = 2.0000714765E-1f;
|
---|
144 | const float PX8logf = -2.4999993993E-1f;
|
---|
145 | const float PX9logf = 3.3333331174E-1f;
|
---|
146 |
|
---|
147 | inline float get_log_poly(const float x){
|
---|
148 | float y = x*PX1logf;
|
---|
149 | y += PX2logf;
|
---|
150 | y *= x;
|
---|
151 | y += PX3logf;
|
---|
152 | y *= x;
|
---|
153 | y += PX4logf;
|
---|
154 | y *= x;
|
---|
155 | y += PX5logf;
|
---|
156 | y *= x;
|
---|
157 | y += PX6logf;
|
---|
158 | y *= x;
|
---|
159 | y += PX7logf;
|
---|
160 | y *= x;
|
---|
161 | y += PX8logf;
|
---|
162 | y *= x;
|
---|
163 | y += PX9logf;
|
---|
164 | return y;
|
---|
165 | }
|
---|
166 |
|
---|
167 | const float SQRTHF = 0.707106781186547524f;
|
---|
168 |
|
---|
169 | }
|
---|
170 |
|
---|
171 | // Log single precision --------------------------------------------------------
|
---|
172 | inline float fast_logf( float x ) {
|
---|
173 |
|
---|
174 | const float original_x = x;
|
---|
175 |
|
---|
176 | float fe;
|
---|
177 | x = details::getMantExponentf( x, fe);
|
---|
178 |
|
---|
179 | x > details::SQRTHF? fe+=1.f : x+=x ;
|
---|
180 | x -= 1.0f;
|
---|
181 |
|
---|
182 | const float x2 = x*x;
|
---|
183 |
|
---|
184 | float res = details::get_log_poly(x);
|
---|
185 | res *= x2*x;
|
---|
186 |
|
---|
187 | res += -2.12194440e-4f * fe;
|
---|
188 | res += -0.5f * x2;
|
---|
189 |
|
---|
190 | res= x + res;
|
---|
191 |
|
---|
192 | res += 0.693359375f * fe;
|
---|
193 |
|
---|
194 | if (original_x > details::LOGF_UPPER_LIMIT)
|
---|
195 | res = std::numeric_limits<float>::infinity();
|
---|
196 | if (original_x < details::LOGF_LOWER_LIMIT)
|
---|
197 | res = -std::numeric_limits<float>::quiet_NaN();
|
---|
198 |
|
---|
199 | return res;
|
---|
200 | }
|
---|
201 |
|
---|
202 |
|
---|
203 | //------------------------------------------------------------------------------
|
---|
204 |
|
---|
205 | } //vdt namespace
|
---|
206 |
|
---|
207 | #endif /* LOG_H_ */
|
---|