Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.4/Crossovers/SubtreeCrossover.cs @ 18091

Last change on this file since 18091 was 17872, checked in by gkronber, 4 years ago

#3067 bugfix in AfterDeserialization hook

File size: 12.6 KB
RevLine 
[645]1#region License Information
2/* HeuristicLab
[17180]3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[645]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[4068]22using System;
[645]23using System.Collections.Generic;
[4068]24using System.Linq;
[4722]25using HeuristicLab.Common;
[645]26using HeuristicLab.Core;
[3237]27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
[16565]29using HEAL.Attic;
[12422]30using HeuristicLab.Random;
[645]31
[5499]32namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
[3237]33  /// <summary>
34  /// Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1.
35  /// And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated.
36  /// When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1
37  /// until a valid configuration is found.
38  /// </summary> 
[7506]39  [Item("SubtreeSwappingCrossover", "An operator which performs subtree swapping crossover.")]
[16565]40  [StorableType("2A2552C0-11C8-4F60-90B2-5FDDD3AB2444")]
[7506]41  public class SubtreeCrossover : SymbolicExpressionTreeCrossover, ISymbolicExpressionTreeSizeConstraintOperator {
[5499]42    private const string InternalCrossoverPointProbabilityParameterName = "InternalCrossoverPointProbability";
43    private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
44    private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
[17490]45    private const string CrossoverProbabilityParameterName = "CrossoverProbability";
[7506]46
[5499]47    #region Parameter Properties
[3237]48    public IValueLookupParameter<PercentValue> InternalCrossoverPointProbabilityParameter {
[5499]49      get { return (IValueLookupParameter<PercentValue>)Parameters[InternalCrossoverPointProbabilityParameterName]; }
[645]50    }
[5499]51    public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
52      get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
53    }
54    public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
55      get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
56    }
[17871]57    public IFixedValueParameter<PercentValue> CrossoverProbabilityParameter {
58      get { return (IFixedValueParameter<PercentValue>)Parameters[CrossoverProbabilityParameterName]; }
[17490]59    }
[5499]60    #endregion
61    #region Properties
62    public PercentValue InternalCrossoverPointProbability {
63      get { return InternalCrossoverPointProbabilityParameter.ActualValue; }
64    }
65    public IntValue MaximumSymbolicExpressionTreeLength {
66      get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; }
67    }
68    public IntValue MaximumSymbolicExpressionTreeDepth {
69      get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; }
70    }
[17490]71    public double CrossoverProbability {
72      get { return CrossoverProbabilityParameter.Value.Value; }
73      set { CrossoverProbabilityParameter.Value.Value = value; }
74    }
[5499]75    #endregion
[4722]76    [StorableConstructor]
[16565]77    protected SubtreeCrossover(StorableConstructorFlag _) : base(_) { }
[7506]78    protected SubtreeCrossover(SubtreeCrossover original, Cloner cloner) : base(original, cloner) { }
[3237]79    public SubtreeCrossover()
80      : base() {
[5499]81      Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "The maximal length (number of nodes) of the symbolic expression tree."));
82      Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeDepthParameterName, "The maximal depth of the symbolic expression tree (a tree with one node has depth = 0)."));
[17871]83      Parameters.Add(new ValueLookupParameter<PercentValue>(InternalCrossoverPointProbabilityParameterName, "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9, true)));
84      Parameters.Add(new FixedValueParameter<PercentValue>(CrossoverProbabilityParameterName, "The probability that a crossover is performed. Otherwise a copy of the first parent is returned.", new PercentValue(1, true)));
[3237]85    }
86
[17490]87    [StorableHook(HookType.AfterDeserialization)]
88    private void AfterDeserialization() {
[17871]89      // replace with PercentValue for files which had CrossoverProbability as DoubleValue
[17872]90      if (Parameters.ContainsKey(CrossoverProbabilityParameterName) && (Parameters[CrossoverProbabilityParameterName] is IFixedValueParameter<DoubleValue> oldParam)) {
91        var oldValue = oldParam.Value.Value;
92        Parameters.Remove(oldParam);
[17871]93        Parameters.Add(new FixedValueParameter<PercentValue>(CrossoverProbabilityParameterName, "The probability that a crossover is performed. Otherwise a copy of the first parent is returned.", new PercentValue(oldValue)));
94      }
[17490]95      if (!Parameters.ContainsKey(CrossoverProbabilityParameterName)) {
[17871]96        Parameters.Add(new FixedValueParameter<PercentValue>(CrossoverProbabilityParameterName, "The probability that a crossover is performed. Otherwise a copy of the first parent is returned.", new PercentValue(1, true)));
[17490]97      }
98    }
99
[4722]100    public override IDeepCloneable Clone(Cloner cloner) {
101      return new SubtreeCrossover(this, cloner);
102    }
103
[7506]104    public override ISymbolicExpressionTree Crossover(IRandom random,
[5510]105      ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
[17490]106      return Cross(random, parent0, parent1, CrossoverProbability, InternalCrossoverPointProbability.Value,
[5499]107        MaximumSymbolicExpressionTreeLength.Value, MaximumSymbolicExpressionTreeDepth.Value);
[3237]108    }
109
[5510]110    public static ISymbolicExpressionTree Cross(IRandom random,
111      ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1,
[17490]112      double probability,
[5549]113      double internalCrossoverPointProbability, int maxTreeLength, int maxTreeDepth) {
[17871]114      if ((probability < 1) && (random.NextDouble() >= probability)) return parent0;
[3294]115      // select a random crossover point in the first parent
[5916]116      CutPoint crossoverPoint0;
117      SelectCrossoverPoint(random, parent0, internalCrossoverPointProbability, maxTreeLength, maxTreeDepth, out crossoverPoint0);
[645]118
[5916]119      int childLength = crossoverPoint0.Child != null ? crossoverPoint0.Child.GetLength() : 0;
[5549]120      // calculate the max length and depth that the inserted branch can have
[14198]121      int maxInsertedBranchLength = Math.Max(0, maxTreeLength - (parent0.Length - childLength));
122      int maxInsertedBranchDepth = Math.Max(0, maxTreeDepth - parent0.Root.GetBranchLevel(crossoverPoint0.Parent));
[645]123
[5510]124      List<ISymbolicExpressionTreeNode> allowedBranches = new List<ISymbolicExpressionTreeNode>();
[3997]125      parent1.Root.ForEachNodePostfix((n) => {
[5549]126        if (n.GetLength() <= maxInsertedBranchLength &&
[7506]127            n.GetDepth() <= maxInsertedBranchDepth && crossoverPoint0.IsMatchingPointType(n))
[3997]128          allowedBranches.Add(n);
129      });
[5916]130      // empty branch
[7506]131      if (crossoverPoint0.IsMatchingPointType(null)) allowedBranches.Add(null);
[645]132
[3997]133      if (allowedBranches.Count == 0) {
[3297]134        return parent0;
135      } else {
[3294]136        var selectedBranch = SelectRandomBranch(random, allowedBranches, internalCrossoverPointProbability);
[14221]137        if (selectedBranch != null)
138          selectedBranch = (ISymbolicExpressionTreeNode)selectedBranch.Clone();
[645]139
[5916]140        if (crossoverPoint0.Child != null) {
141          // manipulate the tree of parent0 in place
142          // replace the branch in tree0 with the selected branch from tree1
143          crossoverPoint0.Parent.RemoveSubtree(crossoverPoint0.ChildIndex);
144          if (selectedBranch != null) {
145            crossoverPoint0.Parent.InsertSubtree(crossoverPoint0.ChildIndex, selectedBranch);
146          }
147        } else {
148          // child is null (additional child should be added under the parent)
149          if (selectedBranch != null) {
150            crossoverPoint0.Parent.AddSubtree(selectedBranch);
151          }
152        }
[3294]153        return parent0;
[645]154      }
155    }
156
[5916]157    private static void SelectCrossoverPoint(IRandom random, ISymbolicExpressionTree parent0, double internalNodeProbability, int maxBranchLength, int maxBranchDepth, out CutPoint crossoverPoint) {
[3997]158      if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
[5686]159      List<CutPoint> internalCrossoverPoints = new List<CutPoint>();
160      List<CutPoint> leafCrossoverPoints = new List<CutPoint>();
[3997]161      parent0.Root.ForEachNodePostfix((n) => {
[7506]162        if (n.SubtreeCount > 0 && n != parent0.Root) {
[12509]163          //avoid linq to reduce memory pressure
164          for (int i = 0; i < n.SubtreeCount; i++) {
165            var child = n.GetSubtree(i);
[5549]166            if (child.GetLength() <= maxBranchLength &&
167                child.GetDepth() <= maxBranchDepth) {
[7506]168              if (child.SubtreeCount > 0)
[5686]169                internalCrossoverPoints.Add(new CutPoint(n, child));
[5367]170              else
[5686]171                leafCrossoverPoints.Add(new CutPoint(n, child));
[5367]172            }
[3997]173          }
[7506]174
[5916]175          // add one additional extension point if the number of sub trees for the symbol is not full
[6803]176          if (n.SubtreeCount < n.Grammar.GetMaximumSubtreeCount(n.Symbol)) {
[5916]177            // empty extension point
[6803]178            internalCrossoverPoints.Add(new CutPoint(n, n.SubtreeCount));
[5916]179          }
[3997]180        }
[7506]181      }
182    );
[5367]183
[3997]184      if (random.NextDouble() < internalNodeProbability) {
185        // select from internal node if possible
186        if (internalCrossoverPoints.Count > 0) {
187          // select internal crossover point or leaf
[5916]188          crossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
[3997]189        } else {
190          // otherwise select external node
[5916]191          crossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
[3997]192        }
193      } else if (leafCrossoverPoints.Count > 0) {
194        // select from leaf crossover point if possible
[5916]195        crossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
[3997]196      } else {
197        // otherwise select internal crossover point
[5916]198        crossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
[645]199      }
200    }
[3237]201
[5510]202    private static ISymbolicExpressionTreeNode SelectRandomBranch(IRandom random, IEnumerable<ISymbolicExpressionTreeNode> branches, double internalNodeProbability) {
[3237]203      if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
[5510]204      List<ISymbolicExpressionTreeNode> allowedInternalBranches;
205      List<ISymbolicExpressionTreeNode> allowedLeafBranches;
[3997]206      if (random.NextDouble() < internalNodeProbability) {
207        // select internal node if possible
208        allowedInternalBranches = (from branch in branches
[7506]209                                   where branch != null && branch.SubtreeCount > 0
[3997]210                                   select branch).ToList();
211        if (allowedInternalBranches.Count > 0) {
[12422]212          return allowedInternalBranches.SampleRandom(random);
213
[3997]214        } else {
215          // no internal nodes allowed => select leaf nodes
216          allowedLeafBranches = (from branch in branches
[7506]217                                 where branch == null || branch.SubtreeCount == 0
[3989]218                                 select branch).ToList();
[12422]219          return allowedLeafBranches.SampleRandom(random);
[3997]220        }
[3237]221      } else {
[3997]222        // select leaf node if possible
223        allowedLeafBranches = (from branch in branches
[7506]224                               where branch == null || branch.SubtreeCount == 0
[3997]225                               select branch).ToList();
226        if (allowedLeafBranches.Count > 0) {
[12422]227          return allowedLeafBranches.SampleRandom(random);
[3997]228        } else {
229          allowedInternalBranches = (from branch in branches
[7506]230                                     where branch != null && branch.SubtreeCount > 0
[3997]231                                     select branch).ToList();
[12422]232          return allowedInternalBranches.SampleRandom(random);
233
[3997]234        }
[3237]235      }
236    }
[645]237  }
238}
Note: See TracBrowser for help on using the repository browser.