[17344] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HEAL.Attic;
|
---|
| 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
[17347] | 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
[17344] | 30 | using HeuristicLab.PluginInfrastructure;
|
---|
| 31 | using HeuristicLab.Random;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
|
---|
| 34 | [NonDiscoverableType]
|
---|
| 35 | [StorableType("AA3649C4-18CF-480B-AA41-F5D6F148B494")]
|
---|
| 36 | [Item("BalancedTreeCreator", "An operator that produces trees with a specified distribution")]
|
---|
| 37 | public class BalancedTreeCreator : SymbolicExpressionTreeCreator {
|
---|
[17347] | 38 | private const string IrregularityBiasParameterName = "IrregularityBias";
|
---|
| 39 |
|
---|
| 40 | public IFixedValueParameter<PercentValue> IrregularityBiasParameter {
|
---|
| 41 | get { return (IFixedValueParameter<PercentValue>)Parameters[IrregularityBiasParameterName]; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public double IrregularityBias {
|
---|
| 45 | get { return IrregularityBiasParameter.Value.Value; }
|
---|
| 46 | set { IrregularityBiasParameter.Value.Value = value; }
|
---|
| 47 | }
|
---|
| 48 |
|
---|
[17344] | 49 | [StorableConstructor]
|
---|
| 50 | protected BalancedTreeCreator(StorableConstructorFlag _) : base(_) { }
|
---|
| 51 |
|
---|
[17347] | 52 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 53 | private void AfterDeserialization() {
|
---|
| 54 | if (!Parameters.ContainsKey(IrregularityBiasParameterName)) {
|
---|
| 55 | Parameters.Add(new FixedValueParameter<PercentValue>(IrregularityBiasParameterName, new PercentValue(0.0)));
|
---|
| 56 | }
|
---|
| 57 | }
|
---|
| 58 |
|
---|
[17344] | 59 | protected BalancedTreeCreator(BalancedTreeCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 60 |
|
---|
[17347] | 61 | public BalancedTreeCreator() {
|
---|
| 62 | Parameters.Add(new FixedValueParameter<PercentValue>(IrregularityBiasParameterName, new PercentValue(0.0)));
|
---|
| 63 | }
|
---|
[17344] | 64 |
|
---|
| 65 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 66 | return new BalancedTreeCreator(this, cloner);
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | public override ISymbolicExpressionTree CreateTree(IRandom random, ISymbolicExpressionGrammar grammar, int maxLength, int maxDepth) {
|
---|
[17347] | 70 | return Create(random, grammar, maxLength, maxDepth, IrregularityBias);
|
---|
[17344] | 71 | }
|
---|
| 72 |
|
---|
[17347] | 73 | public static ISymbolicExpressionTree Create(IRandom random, ISymbolicExpressionGrammar grammar, int maxLength, int maxDepth, double irregularityBias = 0) {
|
---|
[17344] | 74 | int targetLength = random.Next(3, maxLength); // because we have 2 extra nodes for the root and start symbols, and the end is exclusive
|
---|
[17347] | 75 | return CreateExpressionTree(random, grammar, targetLength, maxDepth, irregularityBias);
|
---|
[17344] | 76 | }
|
---|
| 77 |
|
---|
[17437] | 78 | public static ISymbolicExpressionTree CreateExpressionTree(IRandom random, ISymbolicExpressionGrammar grammar, int targetLength, int maxDepth, double irregularityBias = 1) {
|
---|
| 79 | // even lengths cannot be achieved without symbols of odd arity
|
---|
| 80 | // therefore we randomly pick a neighbouring odd length value
|
---|
| 81 | var tree = MakeStump(random, grammar); // create a stump consisting of just a ProgramRootSymbol and a StartSymbol
|
---|
| 82 | CreateExpression(random, tree.Root.GetSubtree(0), targetLength - tree.Length, maxDepth - 2, irregularityBias); // -2 because the stump has length 2 and depth 2
|
---|
| 83 | return tree;
|
---|
[17344] | 84 | }
|
---|
| 85 |
|
---|
[17437] | 86 | private static ISymbolicExpressionTreeNode SampleNode(IRandom random, ISymbolicExpressionTreeGrammar grammar, IEnumerable<ISymbol> allowedSymbols, int minChildArity, int maxChildArity) {
|
---|
| 87 | var candidates = new List<ISymbol>();
|
---|
| 88 | var weights = new List<double>();
|
---|
[17344] | 89 |
|
---|
[17437] | 90 | foreach (var s in allowedSymbols) {
|
---|
| 91 | var minSubtreeCount = grammar.GetMinimumSubtreeCount(s);
|
---|
| 92 | var maxSubtreeCount = grammar.GetMaximumSubtreeCount(s);
|
---|
[17344] | 93 |
|
---|
[17437] | 94 | if (maxChildArity < minSubtreeCount || minChildArity > maxSubtreeCount) { continue; }
|
---|
[17344] | 95 |
|
---|
[17437] | 96 | candidates.Add(s);
|
---|
| 97 | weights.Add(s.InitialFrequency);
|
---|
[17344] | 98 | }
|
---|
[17437] | 99 | var symbol = candidates.SampleProportional(random, 1, weights).First();
|
---|
| 100 | var node = symbol.CreateTreeNode();
|
---|
| 101 | if (node.HasLocalParameters) {
|
---|
| 102 | node.ResetLocalParameters(random);
|
---|
[17344] | 103 | }
|
---|
[17437] | 104 | return node;
|
---|
| 105 | }
|
---|
[17344] | 106 |
|
---|
[17437] | 107 | public static void CreateExpression(IRandom random, ISymbolicExpressionTreeNode root, int targetLength, int maxDepth, double irregularityBias = 1) {
|
---|
| 108 | var grammar = root.Grammar;
|
---|
| 109 | var minSubtreeCount = grammar.GetMinimumSubtreeCount(root.Symbol);
|
---|
| 110 | var maxSubtreeCount = grammar.GetMinimumSubtreeCount(root.Symbol);
|
---|
| 111 | var arity = random.Next(minSubtreeCount, maxSubtreeCount + 1);
|
---|
| 112 | int openSlots = arity;
|
---|
[17344] | 113 |
|
---|
[17437] | 114 | var allowedSymbols = grammar.AllowedSymbols.Where(x => !(x is ProgramRootSymbol || x is GroupSymbol || x is Defun || x is StartSymbol)).ToList();
|
---|
| 115 | bool hasUnarySymbols = allowedSymbols.Any(x => grammar.GetMinimumSubtreeCount(x) <= 1 && grammar.GetMaximumSubtreeCount(x) >= 1);
|
---|
[17344] | 116 |
|
---|
[17437] | 117 | if (!hasUnarySymbols && targetLength % 2 == 0) {
|
---|
| 118 | // without functions of arity 1 some target lengths cannot be reached
|
---|
| 119 | targetLength = random.NextDouble() < 0.5 ? targetLength - 1 : targetLength + 1;
|
---|
[17344] | 120 | }
|
---|
| 121 |
|
---|
[17437] | 122 | var tuples = new List<NodeInfo>(targetLength) { new NodeInfo { Node = root, Depth = 0, Arity = arity } };
|
---|
[17344] | 123 |
|
---|
[17437] | 124 | // we use tuples.Count instead of targetLength in the if condition
|
---|
| 125 | // because depth limits may prevent reaching the target length
|
---|
| 126 | for (int i = 0; i < tuples.Count; ++i) {
|
---|
| 127 | var t = tuples[i];
|
---|
| 128 | var node = t.Node;
|
---|
[17344] | 129 |
|
---|
[17437] | 130 | for (int childIndex = 0; childIndex < t.Arity; ++childIndex) {
|
---|
| 131 | // min and max arity here refer to the required arity limits for the child node
|
---|
| 132 | int minChildArity = 0;
|
---|
| 133 | int maxChildArity = 0;
|
---|
[17344] | 134 |
|
---|
[17437] | 135 | var allowedChildSymbols = allowedSymbols.Where(x => grammar.IsAllowedChildSymbol(node.Symbol, x, childIndex)).ToList();
|
---|
[17344] | 136 |
|
---|
[17437] | 137 | // if we are reaching max depth we have to fill the slot with a leaf node (max arity will be zero)
|
---|
| 138 | // otherwise, find the maximum value from the grammar which does not exceed the length limit
|
---|
| 139 | if (t.Depth < maxDepth - 1 && openSlots < targetLength) {
|
---|
[17344] | 140 |
|
---|
[17437] | 141 | // we don't want to allow sampling a leaf symbol if it prevents us from reaching the target length
|
---|
| 142 | // this should be allowed only when we have enough open expansion points (more than one)
|
---|
| 143 | // the random check against the irregularity bias helps to increase shape variability when the conditions are met
|
---|
| 144 | int minAllowedArity = allowedChildSymbols.Min(x => grammar.GetMaximumSubtreeCount(x));
|
---|
| 145 | if (minAllowedArity == 0 && (openSlots - tuples.Count <= 1 || random.NextDouble() > irregularityBias)) {
|
---|
| 146 | minAllowedArity = 1;
|
---|
| 147 | }
|
---|
[17344] | 148 |
|
---|
[17437] | 149 | // finally adjust min and max arity according to the expansion limits
|
---|
| 150 | int maxAllowedArity = allowedChildSymbols.Max(x => grammar.GetMaximumSubtreeCount(x));
|
---|
| 151 | maxChildArity = Math.Min(maxAllowedArity, targetLength - openSlots);
|
---|
| 152 | minChildArity = Math.Min(minAllowedArity, maxChildArity);
|
---|
[17344] | 153 | }
|
---|
[17437] | 154 |
|
---|
| 155 | // sample a random child with the arity limits
|
---|
| 156 | var child = SampleNode(random, grammar, allowedChildSymbols, minChildArity, maxChildArity);
|
---|
[17344] | 157 |
|
---|
[17437] | 158 | // get actual child arity limits
|
---|
| 159 | minChildArity = Math.Max(minChildArity, grammar.GetMinimumSubtreeCount(child.Symbol));
|
---|
| 160 | maxChildArity = Math.Min(maxChildArity, grammar.GetMaximumSubtreeCount(child.Symbol));
|
---|
| 161 | minChildArity = Math.Min(minChildArity, maxChildArity);
|
---|
[17344] | 162 |
|
---|
[17437] | 163 | // pick a random arity for the new child node
|
---|
| 164 | var childArity = random.Next(minChildArity, maxChildArity + 1);
|
---|
[17344] | 165 | var childDepth = t.Depth + 1;
|
---|
| 166 | node.AddSubtree(child);
|
---|
| 167 | tuples.Add(new NodeInfo { Node = child, Depth = childDepth, Arity = childArity });
|
---|
| 168 | openSlots += childArity;
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | protected override ISymbolicExpressionTree Create(IRandom random) {
|
---|
| 174 | var maxLength = MaximumSymbolicExpressionTreeLengthParameter.ActualValue.Value;
|
---|
| 175 | var maxDepth = MaximumSymbolicExpressionTreeDepthParameter.ActualValue.Value;
|
---|
| 176 | var grammar = ClonedSymbolicExpressionTreeGrammarParameter.ActualValue;
|
---|
| 177 | return Create(random, grammar, maxLength, maxDepth);
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | #region helpers
|
---|
| 181 | private class NodeInfo {
|
---|
| 182 | public ISymbolicExpressionTreeNode Node;
|
---|
| 183 | public int Depth;
|
---|
| 184 | public int Arity;
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | private static ISymbolicExpressionTree MakeStump(IRandom random, ISymbolicExpressionGrammar grammar) {
|
---|
| 188 | SymbolicExpressionTree tree = new SymbolicExpressionTree();
|
---|
| 189 | var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode();
|
---|
| 190 | if (rootNode.HasLocalParameters) rootNode.ResetLocalParameters(random);
|
---|
| 191 | rootNode.SetGrammar(grammar.CreateExpressionTreeGrammar());
|
---|
| 192 |
|
---|
| 193 | var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode();
|
---|
| 194 | if (startNode.HasLocalParameters) startNode.ResetLocalParameters(random);
|
---|
| 195 | startNode.SetGrammar(grammar.CreateExpressionTreeGrammar());
|
---|
| 196 |
|
---|
| 197 | rootNode.AddSubtree(startNode);
|
---|
| 198 | tree.Root = rootNode;
|
---|
| 199 | return tree;
|
---|
| 200 | }
|
---|
[17437] | 201 |
|
---|
[17441] | 202 | public void CreateExpression(IRandom random, ISymbolicExpressionTreeNode seedNode, int maxTreeLength, int maxTreeDepth) {
|
---|
[17437] | 203 | CreateExpression(random, seedNode, maxTreeLength, maxTreeDepth, IrregularityBias);
|
---|
| 204 | }
|
---|
[17344] | 205 | #endregion
|
---|
| 206 | }
|
---|
| 207 | }
|
---|