Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Algorithms.GeneticAlgorithm/3.3/GeneticAlgorithm.cs @ 18023

Last change on this file since 18023 was 17198, checked in by mkommend, 5 years ago

#3020: Adapated AfterDeserializationHook of genetic algorithms to check if the mutator parameter already has the correct type.
In detail the following algorithms have been adapted: ALPS-GA, ALPS-OSGA, GA, Island-GA, NSGA-2, Island-OSGA, OSGA, SASEGASA.

File size: 20.8 KB
RevLine 
[2]1#region License Information
2/* HeuristicLab
[17180]3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[2]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[2865]22using System;
23using System.Linq;
[16565]24using HEAL.Attic;
[4068]25using HeuristicLab.Analysis;
[3376]26using HeuristicLab.Common;
[2]27using HeuristicLab.Core;
28using HeuristicLab.Data;
[5346]29using HeuristicLab.Operators;
[2851]30using HeuristicLab.Optimization;
[3021]31using HeuristicLab.Optimization.Operators;
[2852]32using HeuristicLab.Parameters;
[2882]33using HeuristicLab.PluginInfrastructure;
[3368]34using HeuristicLab.Random;
[2]35
[3196]36namespace HeuristicLab.Algorithms.GeneticAlgorithm {
[1153]37  /// <summary>
[3198]38  /// A genetic algorithm.
[1153]39  /// </summary>
[13173]40  [Item("Genetic Algorithm (GA)", "A genetic algorithm.")]
41  [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 100)]
[16565]42  [StorableType("B63D21BD-D6AE-474B-A319-AC92CCB30AF6")]
[5809]43  public sealed class GeneticAlgorithm : HeuristicOptimizationEngineAlgorithm, IStorableContent {
[4437]44    public string Filename { get; set; }
45
[2986]46    #region Problem Properties
47    public override Type ProblemType {
[5809]48      get { return typeof(ISingleObjectiveHeuristicOptimizationProblem); }
[2986]49    }
[5809]50    public new ISingleObjectiveHeuristicOptimizationProblem Problem {
51      get { return (ISingleObjectiveHeuristicOptimizationProblem)base.Problem; }
[2986]52      set { base.Problem = value; }
53    }
54    #endregion
[2852]55
[2986]56    #region Parameter Properties
[3048]57    private ValueParameter<IntValue> SeedParameter {
58      get { return (ValueParameter<IntValue>)Parameters["Seed"]; }
[2986]59    }
[3048]60    private ValueParameter<BoolValue> SetSeedRandomlyParameter {
61      get { return (ValueParameter<BoolValue>)Parameters["SetSeedRandomly"]; }
[2986]62    }
[3048]63    private ValueParameter<IntValue> PopulationSizeParameter {
64      get { return (ValueParameter<IntValue>)Parameters["PopulationSize"]; }
[2986]65    }
[8121]66    public IConstrainedValueParameter<ISelector> SelectorParameter {
67      get { return (IConstrainedValueParameter<ISelector>)Parameters["Selector"]; }
[2986]68    }
[8121]69    public IConstrainedValueParameter<ICrossover> CrossoverParameter {
70      get { return (IConstrainedValueParameter<ICrossover>)Parameters["Crossover"]; }
[2986]71    }
[3095]72    private ValueParameter<PercentValue> MutationProbabilityParameter {
73      get { return (ValueParameter<PercentValue>)Parameters["MutationProbability"]; }
[2986]74    }
[8121]75    public IConstrainedValueParameter<IManipulator> MutatorParameter {
76      get { return (IConstrainedValueParameter<IManipulator>)Parameters["Mutator"]; }
[2986]77    }
[3048]78    private ValueParameter<IntValue> ElitesParameter {
79      get { return (ValueParameter<IntValue>)Parameters["Elites"]; }
[2986]80    }
[9553]81    private IFixedValueParameter<BoolValue> ReevaluateElitesParameter {
82      get { return (IFixedValueParameter<BoolValue>)Parameters["ReevaluateElites"]; }
83    }
[3658]84    private ValueParameter<MultiAnalyzer> AnalyzerParameter {
85      get { return (ValueParameter<MultiAnalyzer>)Parameters["Analyzer"]; }
[3616]86    }
[3048]87    private ValueParameter<IntValue> MaximumGenerationsParameter {
88      get { return (ValueParameter<IntValue>)Parameters["MaximumGenerations"]; }
[2986]89    }
90    #endregion
[2865]91
[2986]92    #region Properties
[3048]93    public IntValue Seed {
[2986]94      get { return SeedParameter.Value; }
95      set { SeedParameter.Value = value; }
96    }
[3048]97    public BoolValue SetSeedRandomly {
[2986]98      get { return SetSeedRandomlyParameter.Value; }
99      set { SetSeedRandomlyParameter.Value = value; }
100    }
[3048]101    public IntValue PopulationSize {
[2986]102      get { return PopulationSizeParameter.Value; }
103      set { PopulationSizeParameter.Value = value; }
104    }
105    public ISelector Selector {
106      get { return SelectorParameter.Value; }
107      set { SelectorParameter.Value = value; }
108    }
109    public ICrossover Crossover {
110      get { return CrossoverParameter.Value; }
111      set { CrossoverParameter.Value = value; }
112    }
[3095]113    public PercentValue MutationProbability {
[2986]114      get { return MutationProbabilityParameter.Value; }
115      set { MutationProbabilityParameter.Value = value; }
116    }
117    public IManipulator Mutator {
118      get { return MutatorParameter.Value; }
119      set { MutatorParameter.Value = value; }
120    }
[3048]121    public IntValue Elites {
[2986]122      get { return ElitesParameter.Value; }
123      set { ElitesParameter.Value = value; }
124    }
[9553]125    public bool ReevaluteElites {
126      get { return ReevaluateElitesParameter.Value.Value; }
127      set { ReevaluateElitesParameter.Value.Value = value; }
128    }
[3658]129    public MultiAnalyzer Analyzer {
[3616]130      get { return AnalyzerParameter.Value; }
131      set { AnalyzerParameter.Value = value; }
132    }
[3048]133    public IntValue MaximumGenerations {
[2986]134      get { return MaximumGenerationsParameter.Value; }
135      set { MaximumGenerationsParameter.Value = value; }
136    }
137    private RandomCreator RandomCreator {
138      get { return (RandomCreator)OperatorGraph.InitialOperator; }
139    }
[3023]140    private SolutionsCreator SolutionsCreator {
141      get { return (SolutionsCreator)RandomCreator.Successor; }
[2986]142    }
[3198]143    private GeneticAlgorithmMainLoop GeneticAlgorithmMainLoop {
[5366]144      get { return FindMainLoop(SolutionsCreator.Successor); }
[2986]145    }
[3680]146    [Storable]
[3662]147    private BestAverageWorstQualityAnalyzer qualityAnalyzer;
[2986]148    #endregion
[2852]149
[3198]150    public GeneticAlgorithm()
[2986]151      : base() {
[3048]152      Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
153      Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
154      Parameters.Add(new ValueParameter<IntValue>("PopulationSize", "The size of the population of solutions.", new IntValue(100)));
[2986]155      Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions for reproduction."));
156      Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
[3095]157      Parameters.Add(new ValueParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05)));
[15006]158      Parameters.Add(new ConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
[3048]159      Parameters.Add(new ValueParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1)));
[9553]160      Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", new BoolValue(false)) { Hidden = true });
[3658]161      Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
[3048]162      Parameters.Add(new ValueParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed.", new IntValue(1000)));
[2]163
[2986]164      RandomCreator randomCreator = new RandomCreator();
[3023]165      SolutionsCreator solutionsCreator = new SolutionsCreator();
[5352]166      SubScopesCounter subScopesCounter = new SubScopesCounter();
[5356]167      ResultsCollector resultsCollector = new ResultsCollector();
168      GeneticAlgorithmMainLoop mainLoop = new GeneticAlgorithmMainLoop();
[2986]169      OperatorGraph.InitialOperator = randomCreator;
[2882]170
[2986]171      randomCreator.RandomParameter.ActualName = "Random";
172      randomCreator.SeedParameter.ActualName = SeedParameter.Name;
173      randomCreator.SeedParameter.Value = null;
174      randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
175      randomCreator.SetSeedRandomlyParameter.Value = null;
[3023]176      randomCreator.Successor = solutionsCreator;
[2]177
[3023]178      solutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
[5352]179      solutionsCreator.Successor = subScopesCounter;
[2]180
[5352]181      subScopesCounter.Name = "Initialize EvaluatedSolutions";
182      subScopesCounter.ValueParameter.ActualName = "EvaluatedSolutions";
[5356]183      subScopesCounter.Successor = resultsCollector;
[5346]184
[5356]185      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Evaluated Solutions", null, "EvaluatedSolutions"));
186      resultsCollector.ResultsParameter.ActualName = "Results";
187      resultsCollector.Successor = mainLoop;
[2]188
[5356]189      mainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
190      mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
191      mainLoop.ElitesParameter.ActualName = ElitesParameter.Name;
[9554]192      mainLoop.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
[5356]193      mainLoop.MaximumGenerationsParameter.ActualName = MaximumGenerationsParameter.Name;
194      mainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
195      mainLoop.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
196      mainLoop.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
197      mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
198      mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions";
199      mainLoop.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
200      mainLoop.ResultsParameter.ActualName = "Results";
201
[3680]202      foreach (ISelector selector in ApplicationManager.Manager.GetInstances<ISelector>().Where(x => !(x is IMultiObjectiveSelector)).OrderBy(x => x.Name))
203        SelectorParameter.ValidValues.Add(selector);
204      ISelector proportionalSelector = SelectorParameter.ValidValues.FirstOrDefault(x => x.GetType().Name.Equals("ProportionalSelector"));
205      if (proportionalSelector != null) SelectorParameter.Value = proportionalSelector;
206      ParameterizeSelectors();
207
208      qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
209      ParameterizeAnalyzers();
210      UpdateAnalyzers();
211
[3280]212      Initialize();
[2986]213    }
214    [StorableConstructor]
[16565]215    private GeneticAlgorithm(StorableConstructorFlag _) : base(_) { }
[4722]216    [StorableHook(HookType.AfterDeserialization)]
217    private void AfterDeserialization() {
[9592]218      // BackwardsCompatibility3.3
[9591]219      #region Backwards compatible code, remove with 3.4
[9553]220      if (!Parameters.ContainsKey("ReevaluateElites")) {
221        Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", (BoolValue)new BoolValue(false).AsReadOnly()) { Hidden = true });
222      }
[17198]223
[15006]224      var optionalMutatorParameter = MutatorParameter as OptionalConstrainedValueParameter<IManipulator>;
[17198]225      var mutatorParameter = MutatorParameter as ConstrainedValueParameter<IManipulator>;
226      if (mutatorParameter == null && optionalMutatorParameter != null) {
[15006]227        Parameters.Remove(optionalMutatorParameter);
228        Parameters.Add(new ConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
229        foreach (var m in optionalMutatorParameter.ValidValues)
230          MutatorParameter.ValidValues.Add(m);
231        if (optionalMutatorParameter.Value == null) MutationProbability.Value = 0; // to guarantee that the old configuration results in the same behavior
232        else Mutator = optionalMutatorParameter.Value;
233        optionalMutatorParameter.ValidValues.Clear(); // to avoid dangling references to the old parameter its valid values are cleared
234      }
[9591]235      #endregion
236
[4722]237      Initialize();
238    }
[2]239
[9591]240
241
[4722]242    private GeneticAlgorithm(GeneticAlgorithm original, Cloner cloner)
243      : base(original, cloner) {
244      qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
245      Initialize();
246    }
[2986]247    public override IDeepCloneable Clone(Cloner cloner) {
[4722]248      return new GeneticAlgorithm(this, cloner);
[2986]249    }
[2882]250
[3275]251    public override void Prepare() {
252      if (Problem != null) base.Prepare();
[3188]253    }
254
[2986]255    #region Events
256    protected override void OnProblemChanged() {
257      ParameterizeStochasticOperator(Problem.SolutionCreator);
258      ParameterizeStochasticOperator(Problem.Evaluator);
[7999]259      foreach (IOperator op in Problem.Operators.OfType<IOperator>()) ParameterizeStochasticOperator(op);
[3023]260      ParameterizeSolutionsCreator();
[3198]261      ParameterizeGeneticAlgorithmMainLoop();
[2986]262      ParameterizeSelectors();
[3616]263      ParameterizeAnalyzers();
[3750]264      ParameterizeIterationBasedOperators();
[2986]265      UpdateCrossovers();
266      UpdateMutators();
[3616]267      UpdateAnalyzers();
[2986]268      Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
269      base.OnProblemChanged();
270    }
[3139]271
[2986]272    protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) {
273      ParameterizeStochasticOperator(Problem.SolutionCreator);
[3023]274      ParameterizeSolutionsCreator();
[2986]275      base.Problem_SolutionCreatorChanged(sender, e);
276    }
277    protected override void Problem_EvaluatorChanged(object sender, EventArgs e) {
278      ParameterizeStochasticOperator(Problem.Evaluator);
[3023]279      ParameterizeSolutionsCreator();
[3198]280      ParameterizeGeneticAlgorithmMainLoop();
[2986]281      ParameterizeSelectors();
[3616]282      ParameterizeAnalyzers();
[2986]283      Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
284      base.Problem_EvaluatorChanged(sender, e);
285    }
286    protected override void Problem_OperatorsChanged(object sender, EventArgs e) {
[8351]287      foreach (IOperator op in Problem.Operators.OfType<IOperator>()) ParameterizeStochasticOperator(op);
[3750]288      ParameterizeIterationBasedOperators();
[2986]289      UpdateCrossovers();
290      UpdateMutators();
[3616]291      UpdateAnalyzers();
[2986]292      base.Problem_OperatorsChanged(sender, e);
293    }
294    private void ElitesParameter_ValueChanged(object sender, EventArgs e) {
295      Elites.ValueChanged += new EventHandler(Elites_ValueChanged);
296      ParameterizeSelectors();
297    }
298    private void Elites_ValueChanged(object sender, EventArgs e) {
299      ParameterizeSelectors();
300    }
[5206]301
[2986]302    private void PopulationSizeParameter_ValueChanged(object sender, EventArgs e) {
303      PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
304      ParameterizeSelectors();
305    }
306    private void PopulationSize_ValueChanged(object sender, EventArgs e) {
307      ParameterizeSelectors();
308    }
309    private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) {
[3198]310      ParameterizeGeneticAlgorithmMainLoop();
[2986]311      ParameterizeSelectors();
[3616]312      ParameterizeAnalyzers();
[2986]313    }
314    #endregion
[2852]315
[2986]316    #region Helpers
[3280]317    private void Initialize() {
[2986]318      PopulationSizeParameter.ValueChanged += new EventHandler(PopulationSizeParameter_ValueChanged);
319      PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
320      ElitesParameter.ValueChanged += new EventHandler(ElitesParameter_ValueChanged);
321      Elites.ValueChanged += new EventHandler(Elites_ValueChanged);
[3139]322      if (Problem != null) {
[2986]323        Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
[3139]324      }
[2986]325    }
[2852]326
[3023]327    private void ParameterizeSolutionsCreator() {
328      SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
329      SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name;
[2986]330    }
[3198]331    private void ParameterizeGeneticAlgorithmMainLoop() {
332      GeneticAlgorithmMainLoop.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
333      GeneticAlgorithmMainLoop.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
334      GeneticAlgorithmMainLoop.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
[2986]335    }
336    private void ParameterizeStochasticOperator(IOperator op) {
[6051]337      IStochasticOperator stochasticOp = op as IStochasticOperator;
338      if (stochasticOp != null) {
339        stochasticOp.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
340        stochasticOp.RandomParameter.Hidden = true;
341      }
[2986]342    }
343    private void ParameterizeSelectors() {
[3680]344      foreach (ISelector selector in SelectorParameter.ValidValues) {
[3048]345        selector.CopySelected = new BoolValue(true);
346        selector.NumberOfSelectedSubScopesParameter.Value = new IntValue(2 * (PopulationSizeParameter.Value.Value - ElitesParameter.Value.Value));
[6051]347        selector.NumberOfSelectedSubScopesParameter.Hidden = true;
[2986]348        ParameterizeStochasticOperator(selector);
349      }
350      if (Problem != null) {
[3680]351        foreach (ISingleObjectiveSelector selector in SelectorParameter.ValidValues.OfType<ISingleObjectiveSelector>()) {
[2986]352          selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
[6051]353          selector.MaximizationParameter.Hidden = true;
[2986]354          selector.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
[6051]355          selector.QualityParameter.Hidden = true;
[2986]356        }
357      }
358    }
[3616]359    private void ParameterizeAnalyzers() {
360      qualityAnalyzer.ResultsParameter.ActualName = "Results";
[6051]361      qualityAnalyzer.ResultsParameter.Hidden = true;
[3616]362      if (Problem != null) {
363        qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
[6051]364        qualityAnalyzer.MaximizationParameter.Hidden = true;
[3616]365        qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
[3662]366        qualityAnalyzer.QualityParameter.Depth = 1;
[6051]367        qualityAnalyzer.QualityParameter.Hidden = true;
[3616]368        qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
[6051]369        qualityAnalyzer.BestKnownQualityParameter.Hidden = true;
[3616]370      }
371    }
[3750]372    private void ParameterizeIterationBasedOperators() {
373      if (Problem != null) {
374        foreach (IIterationBasedOperator op in Problem.Operators.OfType<IIterationBasedOperator>()) {
375          op.IterationsParameter.ActualName = "Generations";
[6051]376          op.IterationsParameter.Hidden = true;
[3750]377          op.MaximumIterationsParameter.ActualName = "MaximumGenerations";
[6051]378          op.MaximumIterationsParameter.Hidden = true;
[3750]379        }
380      }
381    }
[2986]382    private void UpdateCrossovers() {
[3303]383      ICrossover oldCrossover = CrossoverParameter.Value;
384      CrossoverParameter.ValidValues.Clear();
[7493]385      ICrossover defaultCrossover = Problem.Operators.OfType<ICrossover>().FirstOrDefault();
386
[3303]387      foreach (ICrossover crossover in Problem.Operators.OfType<ICrossover>().OrderBy(x => x.Name))
388        CrossoverParameter.ValidValues.Add(crossover);
[7493]389
[3303]390      if (oldCrossover != null) {
391        ICrossover crossover = CrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldCrossover.GetType());
392        if (crossover != null) CrossoverParameter.Value = crossover;
[7509]393        else oldCrossover = null;
394      }
395      if (oldCrossover == null && defaultCrossover != null)
[7493]396        CrossoverParameter.Value = defaultCrossover;
[2986]397    }
398    private void UpdateMutators() {
[3303]399      IManipulator oldMutator = MutatorParameter.Value;
400      MutatorParameter.ValidValues.Clear();
[15007]401      IManipulator defaultMutator = Problem.Operators.OfType<IManipulator>().FirstOrDefault();
402
[3303]403      foreach (IManipulator mutator in Problem.Operators.OfType<IManipulator>().OrderBy(x => x.Name))
404        MutatorParameter.ValidValues.Add(mutator);
[15007]405
[3303]406      if (oldMutator != null) {
407        IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType());
408        if (mutator != null) MutatorParameter.Value = mutator;
[15007]409        else oldMutator = null;
[3076]410      }
[15007]411
[15008]412      if (oldMutator == null && defaultMutator != null)
[15007]413        MutatorParameter.Value = defaultMutator;
[2986]414    }
[3616]415    private void UpdateAnalyzers() {
416      Analyzer.Operators.Clear();
417      if (Problem != null) {
[3816]418        foreach (IAnalyzer analyzer in Problem.Operators.OfType<IAnalyzer>()) {
[3663]419          foreach (IScopeTreeLookupParameter param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
420            param.Depth = 1;
[7172]421          Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
[3662]422        }
[3616]423      }
[7172]424      Analyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault);
[3616]425    }
[5366]426    private GeneticAlgorithmMainLoop FindMainLoop(IOperator start) {
427      IOperator mainLoop = start;
428      while (mainLoop != null && !(mainLoop is GeneticAlgorithmMainLoop))
429        mainLoop = ((SingleSuccessorOperator)mainLoop).Successor;
430      if (mainLoop == null) return null;
431      else return (GeneticAlgorithmMainLoop)mainLoop;
432    }
[2986]433    #endregion
[2]434  }
435}
Note: See TracBrowser for help on using the repository browser.