[5626] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5626] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[5759] | 23 | using System.Collections.Generic;
|
---|
[5626] | 24 | using System.Linq;
|
---|
[14523] | 25 | using System.Threading;
|
---|
[5626] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
[16565] | 31 | using HEAL.Attic;
|
---|
[5626] | 32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[8609] | 33 | using LibSVM;
|
---|
[5626] | 34 |
|
---|
| 35 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 36 | /// <summary>
|
---|
| 37 | /// Support vector machine classification data analysis algorithm.
|
---|
| 38 | /// </summary>
|
---|
[13238] | 39 | [Item("Support Vector Classification (SVM)", "Support vector machine classification data analysis algorithm (wrapper for libSVM).")]
|
---|
[12504] | 40 | [Creatable(CreatableAttribute.Categories.DataAnalysisClassification, Priority = 110)]
|
---|
[16565] | 41 | [StorableType("F15289E4-B648-4A92-AB01-14D769A33967")]
|
---|
[5626] | 42 | public sealed class SupportVectorClassification : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
| 43 | private const string SvmTypeParameterName = "SvmType";
|
---|
| 44 | private const string KernelTypeParameterName = "KernelType";
|
---|
| 45 | private const string CostParameterName = "Cost";
|
---|
| 46 | private const string NuParameterName = "Nu";
|
---|
| 47 | private const string GammaParameterName = "Gamma";
|
---|
[8613] | 48 | private const string DegreeParameterName = "Degree";
|
---|
[12934] | 49 | private const string CreateSolutionParameterName = "CreateSolution";
|
---|
[5626] | 50 |
|
---|
| 51 | #region parameter properties
|
---|
[8121] | 52 | public IConstrainedValueParameter<StringValue> SvmTypeParameter {
|
---|
| 53 | get { return (IConstrainedValueParameter<StringValue>)Parameters[SvmTypeParameterName]; }
|
---|
[5626] | 54 | }
|
---|
[8121] | 55 | public IConstrainedValueParameter<StringValue> KernelTypeParameter {
|
---|
| 56 | get { return (IConstrainedValueParameter<StringValue>)Parameters[KernelTypeParameterName]; }
|
---|
[5626] | 57 | }
|
---|
| 58 | public IValueParameter<DoubleValue> NuParameter {
|
---|
| 59 | get { return (IValueParameter<DoubleValue>)Parameters[NuParameterName]; }
|
---|
| 60 | }
|
---|
| 61 | public IValueParameter<DoubleValue> CostParameter {
|
---|
| 62 | get { return (IValueParameter<DoubleValue>)Parameters[CostParameterName]; }
|
---|
| 63 | }
|
---|
| 64 | public IValueParameter<DoubleValue> GammaParameter {
|
---|
| 65 | get { return (IValueParameter<DoubleValue>)Parameters[GammaParameterName]; }
|
---|
| 66 | }
|
---|
[8613] | 67 | public IValueParameter<IntValue> DegreeParameter {
|
---|
| 68 | get { return (IValueParameter<IntValue>)Parameters[DegreeParameterName]; }
|
---|
| 69 | }
|
---|
[12934] | 70 | public IFixedValueParameter<BoolValue> CreateSolutionParameter {
|
---|
| 71 | get { return (IFixedValueParameter<BoolValue>)Parameters[CreateSolutionParameterName]; }
|
---|
| 72 | }
|
---|
[5626] | 73 | #endregion
|
---|
| 74 | #region properties
|
---|
| 75 | public StringValue SvmType {
|
---|
| 76 | get { return SvmTypeParameter.Value; }
|
---|
[8121] | 77 | set { SvmTypeParameter.Value = value; }
|
---|
[5626] | 78 | }
|
---|
| 79 | public StringValue KernelType {
|
---|
| 80 | get { return KernelTypeParameter.Value; }
|
---|
[8121] | 81 | set { KernelTypeParameter.Value = value; }
|
---|
[5626] | 82 | }
|
---|
| 83 | public DoubleValue Nu {
|
---|
| 84 | get { return NuParameter.Value; }
|
---|
| 85 | }
|
---|
| 86 | public DoubleValue Cost {
|
---|
| 87 | get { return CostParameter.Value; }
|
---|
| 88 | }
|
---|
| 89 | public DoubleValue Gamma {
|
---|
| 90 | get { return GammaParameter.Value; }
|
---|
| 91 | }
|
---|
[8613] | 92 | public IntValue Degree {
|
---|
| 93 | get { return DegreeParameter.Value; }
|
---|
| 94 | }
|
---|
[12934] | 95 | public bool CreateSolution {
|
---|
| 96 | get { return CreateSolutionParameter.Value.Value; }
|
---|
| 97 | set { CreateSolutionParameter.Value.Value = value; }
|
---|
| 98 | }
|
---|
[5626] | 99 | #endregion
|
---|
| 100 | [StorableConstructor]
|
---|
[16565] | 101 | private SupportVectorClassification(StorableConstructorFlag _) : base(_) { }
|
---|
[5626] | 102 | private SupportVectorClassification(SupportVectorClassification original, Cloner cloner)
|
---|
| 103 | : base(original, cloner) {
|
---|
| 104 | }
|
---|
| 105 | public SupportVectorClassification()
|
---|
| 106 | : base() {
|
---|
[5649] | 107 | Problem = new ClassificationProblem();
|
---|
| 108 |
|
---|
[6812] | 109 | List<StringValue> svrTypes = (from type in new List<string> { "NU_SVC", "C_SVC" }
|
---|
[5626] | 110 | select new StringValue(type).AsReadOnly())
|
---|
| 111 | .ToList();
|
---|
| 112 | ItemSet<StringValue> svrTypeSet = new ItemSet<StringValue>(svrTypes);
|
---|
| 113 | List<StringValue> kernelTypes = (from type in new List<string> { "LINEAR", "POLY", "SIGMOID", "RBF" }
|
---|
| 114 | select new StringValue(type).AsReadOnly())
|
---|
| 115 | .ToList();
|
---|
[5649] | 116 | ItemSet<StringValue> kernelTypeSet = new ItemSet<StringValue>(kernelTypes);
|
---|
[5626] | 117 | Parameters.Add(new ConstrainedValueParameter<StringValue>(SvmTypeParameterName, "The type of SVM to use.", svrTypeSet, svrTypes[0]));
|
---|
| 118 | Parameters.Add(new ConstrainedValueParameter<StringValue>(KernelTypeParameterName, "The kernel type to use for the SVM.", kernelTypeSet, kernelTypes[3]));
|
---|
| 119 | Parameters.Add(new ValueParameter<DoubleValue>(NuParameterName, "The value of the nu parameter nu-SVC.", new DoubleValue(0.5)));
|
---|
| 120 | Parameters.Add(new ValueParameter<DoubleValue>(CostParameterName, "The value of the C (cost) parameter of C-SVC.", new DoubleValue(1.0)));
|
---|
| 121 | Parameters.Add(new ValueParameter<DoubleValue>(GammaParameterName, "The value of the gamma parameter in the kernel function.", new DoubleValue(1.0)));
|
---|
[8613] | 122 | Parameters.Add(new ValueParameter<IntValue>(DegreeParameterName, "The degree parameter for the polynomial kernel function.", new IntValue(3)));
|
---|
[12934] | 123 | Parameters.Add(new FixedValueParameter<BoolValue>(CreateSolutionParameterName, "Flag that indicates if a solution should be produced at the end of the run", new BoolValue(true)));
|
---|
| 124 | Parameters[CreateSolutionParameterName].Hidden = true;
|
---|
[5626] | 125 | }
|
---|
| 126 | [StorableHook(HookType.AfterDeserialization)]
|
---|
[8613] | 127 | private void AfterDeserialization() {
|
---|
| 128 | #region backwards compatibility (change with 3.4)
|
---|
[12934] | 129 | if (!Parameters.ContainsKey(DegreeParameterName)) {
|
---|
| 130 | Parameters.Add(new ValueParameter<IntValue>(DegreeParameterName,
|
---|
| 131 | "The degree parameter for the polynomial kernel function.", new IntValue(3)));
|
---|
| 132 | }
|
---|
| 133 | if (!Parameters.ContainsKey(CreateSolutionParameterName)) {
|
---|
| 134 | Parameters.Add(new FixedValueParameter<BoolValue>(CreateSolutionParameterName,
|
---|
| 135 | "Flag that indicates if a solution should be produced at the end of the run", new BoolValue(true)));
|
---|
| 136 | Parameters[CreateSolutionParameterName].Hidden = true;
|
---|
| 137 | }
|
---|
[8613] | 138 | #endregion
|
---|
| 139 | }
|
---|
[5626] | 140 |
|
---|
| 141 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 142 | return new SupportVectorClassification(this, cloner);
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | #region support vector classification
|
---|
[14523] | 146 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[5626] | 147 | IClassificationProblemData problemData = Problem.ProblemData;
|
---|
[5649] | 148 | IEnumerable<string> selectedInputVariables = problemData.AllowedInputVariables;
|
---|
[7430] | 149 | int nSv;
|
---|
[12934] | 150 | ISupportVectorMachineModel model;
|
---|
[5626] | 151 |
|
---|
[12934] | 152 | Run(problemData, selectedInputVariables, GetSvmType(SvmType.Value), GetKernelType(KernelType.Value), Cost.Value, Nu.Value, Gamma.Value, Degree.Value, out model, out nSv);
|
---|
| 153 |
|
---|
| 154 | if (CreateSolution) {
|
---|
| 155 | var solution = new SupportVectorClassificationSolution((SupportVectorMachineModel)model, (IClassificationProblemData)problemData.Clone());
|
---|
| 156 | Results.Add(new Result("Support vector classification solution", "The support vector classification solution.",
|
---|
| 157 | solution));
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | {
|
---|
| 161 | // calculate classification metrics
|
---|
| 162 | // calculate regression model metrics
|
---|
| 163 | var ds = problemData.Dataset;
|
---|
| 164 | var trainRows = problemData.TrainingIndices;
|
---|
| 165 | var testRows = problemData.TestIndices;
|
---|
| 166 | var yTrain = ds.GetDoubleValues(problemData.TargetVariable, trainRows);
|
---|
| 167 | var yTest = ds.GetDoubleValues(problemData.TargetVariable, testRows);
|
---|
| 168 | var yPredTrain = model.GetEstimatedClassValues(ds, trainRows);
|
---|
| 169 | var yPredTest = model.GetEstimatedClassValues(ds, testRows);
|
---|
| 170 |
|
---|
| 171 | OnlineCalculatorError error;
|
---|
| 172 | var trainAccuracy = OnlineAccuracyCalculator.Calculate(yPredTrain, yTrain, out error);
|
---|
| 173 | if (error != OnlineCalculatorError.None) trainAccuracy = double.MaxValue;
|
---|
| 174 | var testAccuracy = OnlineAccuracyCalculator.Calculate(yPredTest, yTest, out error);
|
---|
| 175 | if (error != OnlineCalculatorError.None) testAccuracy = double.MaxValue;
|
---|
| 176 |
|
---|
| 177 | Results.Add(new Result("Accuracy (training)", "The mean of squared errors of the SVR solution on the training partition.", new DoubleValue(trainAccuracy)));
|
---|
| 178 | Results.Add(new Result("Accuracy (test)", "The mean of squared errors of the SVR solution on the test partition.", new DoubleValue(testAccuracy)));
|
---|
| 179 |
|
---|
| 180 | Results.Add(new Result("Number of support vectors", "The number of support vectors of the SVR solution.",
|
---|
| 181 | new IntValue(nSv)));
|
---|
| 182 | }
|
---|
[5626] | 183 | }
|
---|
| 184 |
|
---|
| 185 | public static SupportVectorClassificationSolution CreateSupportVectorClassificationSolution(IClassificationProblemData problemData, IEnumerable<string> allowedInputVariables,
|
---|
[11337] | 186 | string svmType, string kernelType, double cost, double nu, double gamma, int degree, out double trainingAccuracy, out double testAccuracy, out int nSv) {
|
---|
[11340] | 187 | return CreateSupportVectorClassificationSolution(problemData, allowedInputVariables, GetSvmType(svmType), GetKernelType(kernelType), cost, nu, gamma, degree,
|
---|
[11337] | 188 | out trainingAccuracy, out testAccuracy, out nSv);
|
---|
| 189 | }
|
---|
| 190 |
|
---|
[12934] | 191 | // BackwardsCompatibility3.4
|
---|
| 192 | #region Backwards compatible code, remove with 3.5
|
---|
[11337] | 193 | public static SupportVectorClassificationSolution CreateSupportVectorClassificationSolution(IClassificationProblemData problemData, IEnumerable<string> allowedInputVariables,
|
---|
| 194 | int svmType, int kernelType, double cost, double nu, double gamma, int degree, out double trainingAccuracy, out double testAccuracy, out int nSv) {
|
---|
[12934] | 195 |
|
---|
| 196 | ISupportVectorMachineModel model;
|
---|
| 197 | Run(problemData, allowedInputVariables, svmType, kernelType, cost, nu, gamma, degree, out model, out nSv);
|
---|
| 198 | var solution = new SupportVectorClassificationSolution((SupportVectorMachineModel)model, (IClassificationProblemData)problemData.Clone());
|
---|
| 199 |
|
---|
| 200 | trainingAccuracy = solution.TrainingAccuracy;
|
---|
| 201 | testAccuracy = solution.TestAccuracy;
|
---|
| 202 |
|
---|
| 203 | return solution;
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | #endregion
|
---|
| 207 |
|
---|
| 208 | public static void Run(IClassificationProblemData problemData, IEnumerable<string> allowedInputVariables,
|
---|
| 209 | int svmType, int kernelType, double cost, double nu, double gamma, int degree,
|
---|
| 210 | out ISupportVectorMachineModel model, out int nSv) {
|
---|
[12509] | 211 | var dataset = problemData.Dataset;
|
---|
[5626] | 212 | string targetVariable = problemData.TargetVariable;
|
---|
[8139] | 213 | IEnumerable<int> rows = problemData.TrainingIndices;
|
---|
[5626] | 214 |
|
---|
[12934] | 215 | svm_parameter parameter = new svm_parameter {
|
---|
| 216 | svm_type = svmType,
|
---|
| 217 | kernel_type = kernelType,
|
---|
| 218 | C = cost,
|
---|
| 219 | nu = nu,
|
---|
| 220 | gamma = gamma,
|
---|
| 221 | cache_size = 500,
|
---|
| 222 | probability = 0,
|
---|
| 223 | eps = 0.001,
|
---|
| 224 | degree = degree,
|
---|
| 225 | shrinking = 1,
|
---|
| 226 | coef0 = 0
|
---|
| 227 | };
|
---|
[5626] | 228 |
|
---|
[8609] | 229 | var weightLabels = new List<int>();
|
---|
| 230 | var weights = new List<double>();
|
---|
[6812] | 231 | foreach (double c in problemData.ClassValues) {
|
---|
| 232 | double wSum = 0.0;
|
---|
| 233 | foreach (double otherClass in problemData.ClassValues) {
|
---|
| 234 | if (!c.IsAlmost(otherClass)) {
|
---|
| 235 | wSum += problemData.GetClassificationPenalty(c, otherClass);
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
[8609] | 238 | weightLabels.Add((int)c);
|
---|
| 239 | weights.Add(wSum);
|
---|
[6812] | 240 | }
|
---|
[8609] | 241 | parameter.weight_label = weightLabels.ToArray();
|
---|
| 242 | parameter.weight = weights.ToArray();
|
---|
[5626] | 243 |
|
---|
[8609] | 244 | svm_problem problem = SupportVectorMachineUtil.CreateSvmProblem(dataset, targetVariable, allowedInputVariables, rows);
|
---|
| 245 | RangeTransform rangeTransform = RangeTransform.Compute(problem);
|
---|
| 246 | svm_problem scaledProblem = rangeTransform.Scale(problem);
|
---|
| 247 | var svmModel = svm.svm_train(scaledProblem, parameter);
|
---|
| 248 | nSv = svmModel.SV.Length;
|
---|
[7430] | 249 |
|
---|
[12934] | 250 | model = new SupportVectorMachineModel(svmModel, rangeTransform, targetVariable, allowedInputVariables, problemData.ClassValues);
|
---|
[5626] | 251 | }
|
---|
[8609] | 252 |
|
---|
| 253 | private static int GetSvmType(string svmType) {
|
---|
| 254 | if (svmType == "NU_SVC") return svm_parameter.NU_SVC;
|
---|
| 255 | if (svmType == "C_SVC") return svm_parameter.C_SVC;
|
---|
| 256 | throw new ArgumentException("Unknown SVM type");
|
---|
| 257 | }
|
---|
| 258 |
|
---|
| 259 | private static int GetKernelType(string kernelType) {
|
---|
| 260 | if (kernelType == "LINEAR") return svm_parameter.LINEAR;
|
---|
| 261 | if (kernelType == "POLY") return svm_parameter.POLY;
|
---|
| 262 | if (kernelType == "SIGMOID") return svm_parameter.SIGMOID;
|
---|
| 263 | if (kernelType == "RBF") return svm_parameter.RBF;
|
---|
| 264 | throw new ArgumentException("Unknown kernel type");
|
---|
| 265 | }
|
---|
[5626] | 266 | #endregion
|
---|
| 267 | }
|
---|
| 268 | }
|
---|