[17154] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[17154] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using HEAL.Attic;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | [StorableType("A4F688CD-1F42-4103-8449-7DE52AEF6C69")]
|
---|
| 32 | [Item("RandomForestModelSurrogate", "Represents a random forest for regression and classification.")]
|
---|
| 33 | public sealed class RandomForestModelSurrogate : ClassificationModel, IRandomForestModel {
|
---|
| 34 |
|
---|
| 35 | #region parameters for recalculation of the model
|
---|
| 36 | [Storable]
|
---|
| 37 | private int seed;
|
---|
| 38 | [Storable]
|
---|
| 39 | private IDataAnalysisProblemData originalTrainingData;
|
---|
| 40 | [Storable]
|
---|
| 41 | private double[] classValues;
|
---|
| 42 | [Storable]
|
---|
| 43 | private int nTrees;
|
---|
| 44 | [Storable]
|
---|
| 45 | private double r;
|
---|
| 46 | [Storable]
|
---|
| 47 | private double m;
|
---|
| 48 | #endregion
|
---|
| 49 |
|
---|
| 50 | // don't store the actual model!
|
---|
| 51 | // the actual model is only recalculated when necessary
|
---|
| 52 | private readonly Lazy<IRandomForestModel> actualModel;
|
---|
| 53 | private IRandomForestModel ActualModel {
|
---|
| 54 | get { return actualModel.Value; }
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | public int NumberOfTrees => ActualModel.NumberOfTrees;
|
---|
| 58 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
| 59 | get { return ActualModel.VariablesUsedForPrediction; }
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | public RandomForestModelSurrogate(string targetVariable, IDataAnalysisProblemData originalTrainingData,
|
---|
| 63 | int seed, int nTrees, double r, double m, double[] classValues = null)
|
---|
| 64 | : base(targetVariable) {
|
---|
| 65 | this.name = ItemName;
|
---|
| 66 | this.description = ItemDescription;
|
---|
| 67 |
|
---|
| 68 | // data which is necessary for recalculation of the model
|
---|
| 69 | this.seed = seed;
|
---|
| 70 | this.originalTrainingData = (IDataAnalysisProblemData)originalTrainingData.Clone();
|
---|
| 71 | this.classValues = classValues;
|
---|
| 72 | this.nTrees = nTrees;
|
---|
| 73 | this.r = r;
|
---|
| 74 | this.m = m;
|
---|
| 75 |
|
---|
| 76 | actualModel = new Lazy<IRandomForestModel>(() => RecalculateModel());
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | // wrap an actual model in a surrograte
|
---|
| 80 | public RandomForestModelSurrogate(IRandomForestModel model, string targetVariable, IDataAnalysisProblemData originalTrainingData,
|
---|
| 81 | int seed, int nTrees, double r, double m, double[] classValues = null) : this(targetVariable, originalTrainingData, seed, nTrees, r, m, classValues) {
|
---|
| 82 | actualModel = new Lazy<IRandomForestModel>(() => model);
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | [StorableConstructor]
|
---|
| 86 | private RandomForestModelSurrogate(StorableConstructorFlag _) : base(_) {
|
---|
| 87 | actualModel = new Lazy<IRandomForestModel>(() => RecalculateModel());
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | private RandomForestModelSurrogate(RandomForestModelSurrogate original, Cloner cloner) : base(original, cloner) {
|
---|
| 91 | IRandomForestModel clonedModel = null;
|
---|
| 92 | if (original.actualModel.IsValueCreated) clonedModel = cloner.Clone(original.ActualModel);
|
---|
| 93 | actualModel = new Lazy<IRandomForestModel>(CreateLazyInitFunc(clonedModel)); // only capture clonedModel in the closure
|
---|
| 94 |
|
---|
| 95 | // clone data which is necessary to rebuild the model
|
---|
| 96 | this.originalTrainingData = cloner.Clone(original.originalTrainingData);
|
---|
| 97 | this.seed = original.seed;
|
---|
| 98 | this.classValues = original.classValues;
|
---|
| 99 | this.nTrees = original.nTrees;
|
---|
| 100 | this.r = original.r;
|
---|
| 101 | this.m = original.m;
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | private Func<IRandomForestModel> CreateLazyInitFunc(IRandomForestModel clonedModel) {
|
---|
| 105 | return () => {
|
---|
| 106 | return clonedModel ?? RecalculateModel();
|
---|
| 107 | };
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 111 | return new RandomForestModelSurrogate(this, cloner);
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | private IRandomForestModel RecalculateModel() {
|
---|
| 115 | IRandomForestModel randomForestModel = null;
|
---|
| 116 |
|
---|
| 117 | double rmsError, oobRmsError, relClassError, oobRelClassError;
|
---|
| 118 | var classificationProblemData = originalTrainingData as IClassificationProblemData;
|
---|
| 119 |
|
---|
| 120 | if (originalTrainingData is IRegressionProblemData regressionProblemData) {
|
---|
| 121 | randomForestModel = RandomForestRegression.CreateRandomForestRegressionModel(regressionProblemData,
|
---|
| 122 | nTrees, r, m, seed, out rmsError, out oobRmsError,
|
---|
| 123 | out relClassError, out oobRelClassError);
|
---|
| 124 | } else if (classificationProblemData != null) {
|
---|
| 125 | randomForestModel = RandomForestClassification.CreateRandomForestClassificationModel(classificationProblemData,
|
---|
| 126 | nTrees, r, m, seed, out rmsError, out oobRmsError,
|
---|
| 127 | out relClassError, out oobRelClassError);
|
---|
| 128 | }
|
---|
| 129 | return randomForestModel;
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | //RegressionModel methods
|
---|
| 133 | public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
|
---|
| 134 | return ActualModel.IsProblemDataCompatible(problemData, out errorMessage);
|
---|
| 135 | }
|
---|
| 136 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
| 137 | return ActualModel.GetEstimatedValues(dataset, rows);
|
---|
| 138 | }
|
---|
| 139 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
| 140 | return ActualModel.GetEstimatedVariances(dataset, rows);
|
---|
| 141 | }
|
---|
| 142 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 143 | return new RandomForestRegressionSolution(this, (IRegressionProblemData)problemData.Clone());
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | //ClassificationModel methods
|
---|
| 147 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
| 148 | return ActualModel.GetEstimatedClassValues(dataset, rows);
|
---|
| 149 | }
|
---|
| 150 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 151 | return new RandomForestClassificationSolution(this, (IClassificationProblemData)problemData.Clone());
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | public ISymbolicExpressionTree ExtractTree(int treeIdx) {
|
---|
| 155 | return ActualModel.ExtractTree(treeIdx);
|
---|
| 156 | }
|
---|
| 157 | }
|
---|
| 158 | } |
---|