1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HEAL.Attic;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
36 | [Item("NcaGradientCalculator", "Calculates the quality and gradient of a certain NCA matrix.")]
|
---|
37 | [StorableType("51A6EEB2-321D-460A-AF45-414144E06C85")]
|
---|
38 | public class NcaGradientCalculator : SingleSuccessorOperator, ISingleObjectiveOperator {
|
---|
39 |
|
---|
40 | #region Parameter Properties
|
---|
41 | public ILookupParameter<IntValue> DimensionsParameter {
|
---|
42 | get { return (ILookupParameter<IntValue>)Parameters["Dimensions"]; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | public ILookupParameter<IntValue> NeighborSamplesParameter {
|
---|
46 | get { return (ILookupParameter<IntValue>)Parameters["NeighborSamples"]; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public ILookupParameter<DoubleValue> RegularizationParameter {
|
---|
50 | get { return (ILookupParameter<DoubleValue>)Parameters["Regularization"]; }
|
---|
51 | }
|
---|
52 |
|
---|
53 | public ILookupParameter<RealVector> NcaMatrixParameter {
|
---|
54 | get { return (ILookupParameter<RealVector>)Parameters["NcaMatrix"]; }
|
---|
55 | }
|
---|
56 |
|
---|
57 | public ILookupParameter<RealVector> NcaMatrixGradientsParameter {
|
---|
58 | get { return (ILookupParameter<RealVector>)Parameters["NcaMatrixGradients"]; }
|
---|
59 | }
|
---|
60 |
|
---|
61 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
62 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
63 | }
|
---|
64 |
|
---|
65 | public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
|
---|
66 | get { return (ILookupParameter<IClassificationProblemData>)Parameters["ProblemData"]; }
|
---|
67 | }
|
---|
68 | #endregion
|
---|
69 |
|
---|
70 | [StorableConstructor]
|
---|
71 | protected NcaGradientCalculator(StorableConstructorFlag _) : base(_) { }
|
---|
72 | protected NcaGradientCalculator(NcaGradientCalculator original, Cloner cloner) : base(original, cloner) { }
|
---|
73 | public NcaGradientCalculator()
|
---|
74 | : base() {
|
---|
75 | Parameters.Add(new LookupParameter<IntValue>("Dimensions", "The dimensions to which the feature space should be reduced to."));
|
---|
76 | Parameters.Add(new LookupParameter<IntValue>("NeighborSamples", "The number of neighbors that should be taken into account at maximum."));
|
---|
77 | Parameters.Add(new LookupParameter<DoubleValue>("Regularization", "The regularization term that constrains the expansion of the projected space."));
|
---|
78 | Parameters.Add(new LookupParameter<RealVector>("NcaMatrix", "The optimized matrix."));
|
---|
79 | Parameters.Add(new LookupParameter<RealVector>("NcaMatrixGradients", "The gradients from the matrix that is being optimized."));
|
---|
80 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality of the current matrix."));
|
---|
81 | Parameters.Add(new LookupParameter<IClassificationProblemData>("ProblemData", "The classification problem data."));
|
---|
82 | }
|
---|
83 |
|
---|
84 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
85 | return new NcaGradientCalculator(this, cloner);
|
---|
86 | }
|
---|
87 |
|
---|
88 | public override IOperation Apply() {
|
---|
89 | var problemData = ProblemDataParameter.ActualValue;
|
---|
90 | var dimensions = DimensionsParameter.ActualValue.Value;
|
---|
91 | var neighborSamples = NeighborSamplesParameter.ActualValue.Value;
|
---|
92 | var regularization = RegularizationParameter.ActualValue.Value;
|
---|
93 |
|
---|
94 | var vector = NcaMatrixParameter.ActualValue;
|
---|
95 | var gradients = NcaMatrixGradientsParameter.ActualValue;
|
---|
96 | if (gradients == null) {
|
---|
97 | gradients = new RealVector(vector.Length);
|
---|
98 | NcaMatrixGradientsParameter.ActualValue = gradients;
|
---|
99 | }
|
---|
100 |
|
---|
101 | var data = problemData.Dataset.ToArray(problemData.AllowedInputVariables,
|
---|
102 | problemData.TrainingIndices);
|
---|
103 | var classes = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray();
|
---|
104 |
|
---|
105 | var quality = Gradient(vector, gradients, data, classes, dimensions, neighborSamples, regularization);
|
---|
106 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
107 |
|
---|
108 | return base.Apply();
|
---|
109 | }
|
---|
110 |
|
---|
111 | private static double Gradient(RealVector A, RealVector grad, double[,] data, double[] classes, int dimensions, int neighborSamples, double regularization) {
|
---|
112 | var instances = data.GetLength(0);
|
---|
113 | var attributes = data.GetLength(1);
|
---|
114 |
|
---|
115 | var AMatrix = new Matrix(A, A.Length / dimensions, dimensions);
|
---|
116 |
|
---|
117 | alglib.sparsematrix probabilities;
|
---|
118 | alglib.sparsecreate(instances, instances, out probabilities);
|
---|
119 | var transformedDistances = new Dictionary<int, double>(instances);
|
---|
120 | for (int i = 0; i < instances; i++) {
|
---|
121 | var iVector = new Matrix(GetRow(data, i), data.GetLength(1));
|
---|
122 | for (int k = 0; k < instances; k++) {
|
---|
123 | if (k == i) {
|
---|
124 | transformedDistances.Remove(k);
|
---|
125 | continue;
|
---|
126 | }
|
---|
127 | var kVector = new Matrix(GetRow(data, k));
|
---|
128 | transformedDistances[k] = Math.Exp(-iVector.Multiply(AMatrix).Subtract(kVector.Multiply(AMatrix)).SumOfSquares());
|
---|
129 | }
|
---|
130 | var normalization = transformedDistances.Sum(x => x.Value);
|
---|
131 | if (normalization <= 0) continue;
|
---|
132 | foreach (var s in transformedDistances.Where(x => x.Value > 0).OrderByDescending(x => x.Value).Take(neighborSamples)) {
|
---|
133 | alglib.sparseset(probabilities, i, s.Key, s.Value / normalization);
|
---|
134 | }
|
---|
135 | }
|
---|
136 | alglib.sparseconverttocrs(probabilities); // needed to enumerate in order (top-down and left-right)
|
---|
137 |
|
---|
138 | int t0 = 0, t1 = 0, r, c;
|
---|
139 | double val;
|
---|
140 | var pi = new double[instances];
|
---|
141 | while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
|
---|
142 | if (classes[r].IsAlmost(classes[c])) {
|
---|
143 | pi[r] += val;
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | var innerSum = new double[attributes, attributes];
|
---|
148 | while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
|
---|
149 | var vector = new Matrix(GetRow(data, r)).Subtract(new Matrix(GetRow(data, c)));
|
---|
150 | vector.OuterProduct(vector).Multiply(val * pi[r]).AddTo(innerSum);
|
---|
151 |
|
---|
152 | if (classes[r].IsAlmost(classes[c])) {
|
---|
153 | vector.OuterProduct(vector).Multiply(-val).AddTo(innerSum);
|
---|
154 | }
|
---|
155 | }
|
---|
156 |
|
---|
157 | var func = -pi.Sum() + regularization * AMatrix.SumOfSquares();
|
---|
158 |
|
---|
159 | r = 0;
|
---|
160 | var newGrad = AMatrix.Multiply(-2.0).Transpose().Multiply(new Matrix(innerSum)).Transpose();
|
---|
161 | foreach (var g in newGrad) {
|
---|
162 | grad[r] = g + regularization * 2 * A[r];
|
---|
163 | r++;
|
---|
164 | }
|
---|
165 |
|
---|
166 | return func;
|
---|
167 | }
|
---|
168 |
|
---|
169 | private static IEnumerable<double> GetRow(double[,] data, int row) {
|
---|
170 | for (int i = 0; i < data.GetLength(1); i++)
|
---|
171 | yield return data[row, i];
|
---|
172 | }
|
---|
173 | }
|
---|
174 | } |
---|