1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HEAL.Attic;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | [StorableType("4148D88C-6081-4D84-B718-C949CA5AA766")]
|
---|
32 | [Item("KernelRidgeRegressionModel", "A kernel ridge regression model")]
|
---|
33 | public sealed class KernelRidgeRegressionModel : RegressionModel {
|
---|
34 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
35 | get { return allowedInputVariables; }
|
---|
36 | }
|
---|
37 |
|
---|
38 | [Storable]
|
---|
39 | private readonly string[] allowedInputVariables;
|
---|
40 | public string[] AllowedInputVariables {
|
---|
41 | get { return allowedInputVariables.ToArray(); }
|
---|
42 | }
|
---|
43 |
|
---|
44 |
|
---|
45 | [Storable]
|
---|
46 | public double LooCvRMSE { get; private set; }
|
---|
47 |
|
---|
48 | [Storable]
|
---|
49 | private readonly double[] alpha;
|
---|
50 |
|
---|
51 | [Storable]
|
---|
52 | private readonly double[,] trainX; // it is better to store the original training dataset completely because this is more efficient in persistence
|
---|
53 |
|
---|
54 | [Storable]
|
---|
55 | private readonly ITransformation<double>[] scaling;
|
---|
56 |
|
---|
57 | [Storable]
|
---|
58 | private readonly ICovarianceFunction kernel;
|
---|
59 |
|
---|
60 | [Storable]
|
---|
61 | private readonly double lambda;
|
---|
62 |
|
---|
63 | [Storable]
|
---|
64 | private readonly double yOffset; // implementation works for zero-mean, unit-variance target variables
|
---|
65 |
|
---|
66 | [Storable]
|
---|
67 | private readonly double yScale;
|
---|
68 |
|
---|
69 | [StorableConstructor]
|
---|
70 | private KernelRidgeRegressionModel(StorableConstructorFlag _) : base(_) { }
|
---|
71 | private KernelRidgeRegressionModel(KernelRidgeRegressionModel original, Cloner cloner)
|
---|
72 | : base(original, cloner) {
|
---|
73 | // shallow copies of arrays because they cannot be modified
|
---|
74 | allowedInputVariables = original.allowedInputVariables;
|
---|
75 | alpha = original.alpha;
|
---|
76 | trainX = original.trainX;
|
---|
77 | scaling = original.scaling;
|
---|
78 | lambda = original.lambda;
|
---|
79 | LooCvRMSE = original.LooCvRMSE;
|
---|
80 |
|
---|
81 | yOffset = original.yOffset;
|
---|
82 | yScale = original.yScale;
|
---|
83 | kernel = original.kernel;
|
---|
84 | }
|
---|
85 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
86 | return new KernelRidgeRegressionModel(this, cloner);
|
---|
87 | }
|
---|
88 |
|
---|
89 | public static KernelRidgeRegressionModel Create(IDataset dataset, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
|
---|
90 | bool scaleInputs, ICovarianceFunction kernel, double lambda = 0.1) {
|
---|
91 | var trainingRows = rows.ToArray();
|
---|
92 | var model = new KernelRidgeRegressionModel(dataset, targetVariable, allowedInputVariables, trainingRows, scaleInputs, kernel, lambda);
|
---|
93 |
|
---|
94 | try {
|
---|
95 | int info;
|
---|
96 | int n = model.trainX.GetLength(0);
|
---|
97 | alglib.densesolverreport denseSolveRep;
|
---|
98 | var gram = BuildGramMatrix(model.trainX, lambda, kernel);
|
---|
99 | var l = new double[n, n];
|
---|
100 | Array.Copy(gram, l, l.Length);
|
---|
101 |
|
---|
102 | double[] alpha = new double[n];
|
---|
103 | double[,] invG;
|
---|
104 | var y = dataset.GetDoubleValues(targetVariable, trainingRows).ToArray();
|
---|
105 | for (int i = 0; i < y.Length; i++) {
|
---|
106 | y[i] -= model.yOffset;
|
---|
107 | y[i] *= model.yScale;
|
---|
108 | }
|
---|
109 | // cholesky decomposition
|
---|
110 | var res = alglib.trfac.spdmatrixcholesky(ref l, n, false);
|
---|
111 | if (res == false) { //try lua decomposition if cholesky faild
|
---|
112 | int[] pivots;
|
---|
113 | var lua = new double[n, n];
|
---|
114 | Array.Copy(gram, lua, lua.Length);
|
---|
115 | alglib.rmatrixlu(ref lua, n, n, out pivots);
|
---|
116 | alglib.rmatrixlusolve(lua, pivots, n, y, out info, out denseSolveRep, out alpha);
|
---|
117 | if (info != 1) throw new ArgumentException("Could not create model.");
|
---|
118 | alglib.matinvreport rep;
|
---|
119 | invG = lua; // rename
|
---|
120 | alglib.rmatrixluinverse(ref invG, pivots, n, out info, out rep);
|
---|
121 | } else {
|
---|
122 | alglib.spdmatrixcholeskysolve(l, n, false, y, out info, out denseSolveRep, out alpha);
|
---|
123 | if (info != 1) throw new ArgumentException("Could not create model.");
|
---|
124 | // for LOO-CV we need to build the inverse of the gram matrix
|
---|
125 | alglib.matinvreport rep;
|
---|
126 | invG = l; // rename
|
---|
127 | alglib.spdmatrixcholeskyinverse(ref invG, n, false, out info, out rep);
|
---|
128 | }
|
---|
129 | if (info != 1) throw new ArgumentException("Could not invert Gram matrix.");
|
---|
130 |
|
---|
131 | var ssqLooError = 0.0;
|
---|
132 | for (int i = 0; i < n; i++) {
|
---|
133 | var pred_i = Util.ScalarProd(Util.GetRow(gram, i).ToArray(), alpha);
|
---|
134 | var looPred_i = pred_i - alpha[i] / invG[i, i];
|
---|
135 | var error = (y[i] - looPred_i) / model.yScale;
|
---|
136 | ssqLooError += error * error;
|
---|
137 | }
|
---|
138 |
|
---|
139 | Array.Copy(alpha, model.alpha, n);
|
---|
140 | model.LooCvRMSE = Math.Sqrt(ssqLooError / n);
|
---|
141 | } catch (alglib.alglibexception ae) {
|
---|
142 | // wrap exception so that calling code doesn't have to know about alglib implementation
|
---|
143 | throw new ArgumentException("There was a problem in the calculation of the kernel ridge regression model", ae);
|
---|
144 | }
|
---|
145 | return model;
|
---|
146 | }
|
---|
147 |
|
---|
148 | private KernelRidgeRegressionModel(IDataset dataset, string targetVariable, IEnumerable<string> allowedInputVariables, int[] rows,
|
---|
149 | bool scaleInputs, ICovarianceFunction kernel, double lambda = 0.1) : base(targetVariable) {
|
---|
150 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
151 | if (kernel.GetNumberOfParameters(this.allowedInputVariables.Length) > 0) throw new ArgumentException("All parameters in the kernel function must be specified.");
|
---|
152 | name = ItemName;
|
---|
153 | description = ItemDescription;
|
---|
154 |
|
---|
155 | this.kernel = (ICovarianceFunction)kernel.Clone();
|
---|
156 | this.lambda = lambda;
|
---|
157 | if (scaleInputs) scaling = CreateScaling(dataset, rows, this.allowedInputVariables);
|
---|
158 | trainX = ExtractData(dataset, rows, this.allowedInputVariables, scaling);
|
---|
159 | var y = dataset.GetDoubleValues(targetVariable, rows).ToArray();
|
---|
160 | yOffset = y.Average();
|
---|
161 | yScale = 1.0 / y.StandardDeviation();
|
---|
162 | alpha = new double[trainX.GetLength(0)];
|
---|
163 | }
|
---|
164 |
|
---|
165 |
|
---|
166 | #region IRegressionModel Members
|
---|
167 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
168 | var newX = ExtractData(dataset, rows, allowedInputVariables, scaling);
|
---|
169 | var dim = newX.GetLength(1);
|
---|
170 | var cov = kernel.GetParameterizedCovarianceFunction(new double[0], Enumerable.Range(0, dim).ToArray());
|
---|
171 |
|
---|
172 | var pred = new double[newX.GetLength(0)];
|
---|
173 | for (int i = 0; i < pred.Length; i++) {
|
---|
174 | double sum = 0.0;
|
---|
175 | for (int j = 0; j < alpha.Length; j++) {
|
---|
176 | sum += alpha[j] * cov.CrossCovariance(trainX, newX, j, i);
|
---|
177 | }
|
---|
178 | pred[i] = sum / yScale + yOffset;
|
---|
179 | }
|
---|
180 | return pred;
|
---|
181 | }
|
---|
182 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
183 | return new RegressionSolution(this, new RegressionProblemData(problemData));
|
---|
184 | }
|
---|
185 | #endregion
|
---|
186 |
|
---|
187 | #region helpers
|
---|
188 | private static double[,] BuildGramMatrix(double[,] data, double lambda, ICovarianceFunction kernel) {
|
---|
189 | var n = data.GetLength(0);
|
---|
190 | var dim = data.GetLength(1);
|
---|
191 | var cov = kernel.GetParameterizedCovarianceFunction(new double[0], Enumerable.Range(0, dim).ToArray());
|
---|
192 | var gram = new double[n, n];
|
---|
193 | // G = (K + λ I)
|
---|
194 | for (var i = 0; i < n; i++) {
|
---|
195 | for (var j = i; j < n; j++) {
|
---|
196 | gram[i, j] = gram[j, i] = cov.Covariance(data, i, j); // symmetric matrix
|
---|
197 | }
|
---|
198 | gram[i, i] += lambda;
|
---|
199 | }
|
---|
200 | return gram;
|
---|
201 | }
|
---|
202 |
|
---|
203 | private static ITransformation<double>[] CreateScaling(IDataset dataset, int[] rows, IReadOnlyCollection<string> allowedInputVariables) {
|
---|
204 | var trans = new ITransformation<double>[allowedInputVariables.Count];
|
---|
205 | int i = 0;
|
---|
206 | foreach (var variable in allowedInputVariables) {
|
---|
207 | var lin = new LinearTransformation(allowedInputVariables);
|
---|
208 | var max = dataset.GetDoubleValues(variable, rows).Max();
|
---|
209 | var min = dataset.GetDoubleValues(variable, rows).Min();
|
---|
210 | lin.Multiplier = 1.0 / (max - min);
|
---|
211 | lin.Addend = -min / (max - min);
|
---|
212 | trans[i] = lin;
|
---|
213 | i++;
|
---|
214 | }
|
---|
215 | return trans;
|
---|
216 | }
|
---|
217 |
|
---|
218 | private static double[,] ExtractData(IDataset dataset, IEnumerable<int> rows, IReadOnlyCollection<string> allowedInputVariables, ITransformation<double>[] scaling = null) {
|
---|
219 | double[][] variables;
|
---|
220 | if (scaling != null) {
|
---|
221 | variables =
|
---|
222 | allowedInputVariables.Select((var, i) => scaling[i].Apply(dataset.GetDoubleValues(var, rows)).ToArray())
|
---|
223 | .ToArray();
|
---|
224 | } else {
|
---|
225 | variables =
|
---|
226 | allowedInputVariables.Select(var => dataset.GetDoubleValues(var, rows).ToArray()).ToArray();
|
---|
227 | }
|
---|
228 | int n = variables.First().Length;
|
---|
229 | var res = new double[n, variables.Length];
|
---|
230 | for (int r = 0; r < n; r++)
|
---|
231 | for (int c = 0; c < variables.Length; c++) {
|
---|
232 | res[r, c] = variables[c][r];
|
---|
233 | }
|
---|
234 | return res;
|
---|
235 | }
|
---|
236 | #endregion
|
---|
237 | }
|
---|
238 | }
|
---|