[14872] | 1 | #region License Information
|
---|
[14386] | 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[14386] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[14888] | 23 | using System.Collections.Generic;
|
---|
[14386] | 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[16565] | 27 | using HEAL.Attic;
|
---|
[14386] | 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
[14936] | 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[16565] | 31 | [StorableType("4148D88C-6081-4D84-B718-C949CA5AA766")]
|
---|
[14887] | 32 | [Item("KernelRidgeRegressionModel", "A kernel ridge regression model")]
|
---|
| 33 | public sealed class KernelRidgeRegressionModel : RegressionModel {
|
---|
[14892] | 34 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
[14386] | 35 | get { return allowedInputVariables; }
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | [Storable]
|
---|
[14872] | 39 | private readonly string[] allowedInputVariables;
|
---|
[14892] | 40 | public string[] AllowedInputVariables {
|
---|
[15164] | 41 | get { return allowedInputVariables.ToArray(); }
|
---|
[14386] | 42 | }
|
---|
| 43 |
|
---|
[14888] | 44 |
|
---|
[14386] | 45 | [Storable]
|
---|
[14888] | 46 | public double LooCvRMSE { get; private set; }
|
---|
| 47 |
|
---|
| 48 | [Storable]
|
---|
[14872] | 49 | private readonly double[] alpha;
|
---|
| 50 |
|
---|
[14386] | 51 | [Storable]
|
---|
[14872] | 52 | private readonly double[,] trainX; // it is better to store the original training dataset completely because this is more efficient in persistence
|
---|
| 53 |
|
---|
[14386] | 54 | [Storable]
|
---|
[14872] | 55 | private readonly ITransformation<double>[] scaling;
|
---|
| 56 |
|
---|
[14386] | 57 | [Storable]
|
---|
[14872] | 58 | private readonly ICovarianceFunction kernel;
|
---|
| 59 |
|
---|
[14887] | 60 | [Storable]
|
---|
| 61 | private readonly double lambda;
|
---|
[14872] | 62 |
|
---|
[14386] | 63 | [Storable]
|
---|
[14888] | 64 | private readonly double yOffset; // implementation works for zero-mean, unit-variance target variables
|
---|
[14386] | 65 |
|
---|
[14887] | 66 | [Storable]
|
---|
| 67 | private readonly double yScale;
|
---|
| 68 |
|
---|
[14386] | 69 | [StorableConstructor]
|
---|
[16565] | 70 | private KernelRidgeRegressionModel(StorableConstructorFlag _) : base(_) { }
|
---|
[14887] | 71 | private KernelRidgeRegressionModel(KernelRidgeRegressionModel original, Cloner cloner)
|
---|
[14386] | 72 | : base(original, cloner) {
|
---|
| 73 | // shallow copies of arrays because they cannot be modified
|
---|
| 74 | allowedInputVariables = original.allowedInputVariables;
|
---|
| 75 | alpha = original.alpha;
|
---|
[14872] | 76 | trainX = original.trainX;
|
---|
| 77 | scaling = original.scaling;
|
---|
[14887] | 78 | lambda = original.lambda;
|
---|
[14888] | 79 | LooCvRMSE = original.LooCvRMSE;
|
---|
[14872] | 80 |
|
---|
[14887] | 81 | yOffset = original.yOffset;
|
---|
| 82 | yScale = original.yScale;
|
---|
[15164] | 83 | kernel = original.kernel;
|
---|
[14386] | 84 | }
|
---|
[14887] | 85 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 86 | return new KernelRidgeRegressionModel(this, cloner);
|
---|
| 87 | }
|
---|
| 88 |
|
---|
[15164] | 89 | public static KernelRidgeRegressionModel Create(IDataset dataset, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
|
---|
| 90 | bool scaleInputs, ICovarianceFunction kernel, double lambda = 0.1) {
|
---|
[14872] | 91 | var trainingRows = rows.ToArray();
|
---|
[15164] | 92 | var model = new KernelRidgeRegressionModel(dataset, targetVariable, allowedInputVariables, trainingRows, scaleInputs, kernel, lambda);
|
---|
| 93 |
|
---|
[14386] | 94 | try {
|
---|
| 95 | int info;
|
---|
[15164] | 96 | int n = model.trainX.GetLength(0);
|
---|
[14887] | 97 | alglib.densesolverreport denseSolveRep;
|
---|
[15164] | 98 | var gram = BuildGramMatrix(model.trainX, lambda, kernel);
|
---|
| 99 | var l = new double[n, n];
|
---|
| 100 | Array.Copy(gram, l, l.Length);
|
---|
[14872] | 101 |
|
---|
[15164] | 102 | double[] alpha = new double[n];
|
---|
[14891] | 103 | double[,] invG;
|
---|
[15164] | 104 | var y = dataset.GetDoubleValues(targetVariable, trainingRows).ToArray();
|
---|
| 105 | for (int i = 0; i < y.Length; i++) {
|
---|
| 106 | y[i] -= model.yOffset;
|
---|
| 107 | y[i] *= model.yScale;
|
---|
| 108 | }
|
---|
[14887] | 109 | // cholesky decomposition
|
---|
[14888] | 110 | var res = alglib.trfac.spdmatrixcholesky(ref l, n, false);
|
---|
[15164] | 111 | if (res == false) { //try lua decomposition if cholesky faild
|
---|
[14891] | 112 | int[] pivots;
|
---|
| 113 | var lua = new double[n, n];
|
---|
| 114 | Array.Copy(gram, lua, lua.Length);
|
---|
| 115 | alglib.rmatrixlu(ref lua, n, n, out pivots);
|
---|
| 116 | alglib.rmatrixlusolve(lua, pivots, n, y, out info, out denseSolveRep, out alpha);
|
---|
| 117 | if (info != 1) throw new ArgumentException("Could not create model.");
|
---|
| 118 | alglib.matinvreport rep;
|
---|
| 119 | invG = lua; // rename
|
---|
| 120 | alglib.rmatrixluinverse(ref invG, pivots, n, out info, out rep);
|
---|
| 121 | } else {
|
---|
| 122 | alglib.spdmatrixcholeskysolve(l, n, false, y, out info, out denseSolveRep, out alpha);
|
---|
| 123 | if (info != 1) throw new ArgumentException("Could not create model.");
|
---|
[14888] | 124 | // for LOO-CV we need to build the inverse of the gram matrix
|
---|
| 125 | alglib.matinvreport rep;
|
---|
[14891] | 126 | invG = l; // rename
|
---|
| 127 | alglib.spdmatrixcholeskyinverse(ref invG, n, false, out info, out rep);
|
---|
[14888] | 128 | }
|
---|
[15164] | 129 | if (info != 1) throw new ArgumentException("Could not invert Gram matrix.");
|
---|
[14891] | 130 |
|
---|
| 131 | var ssqLooError = 0.0;
|
---|
| 132 | for (int i = 0; i < n; i++) {
|
---|
| 133 | var pred_i = Util.ScalarProd(Util.GetRow(gram, i).ToArray(), alpha);
|
---|
| 134 | var looPred_i = pred_i - alpha[i] / invG[i, i];
|
---|
[15164] | 135 | var error = (y[i] - looPred_i) / model.yScale;
|
---|
[14891] | 136 | ssqLooError += error * error;
|
---|
| 137 | }
|
---|
[15164] | 138 |
|
---|
| 139 | Array.Copy(alpha, model.alpha, n);
|
---|
| 140 | model.LooCvRMSE = Math.Sqrt(ssqLooError / n);
|
---|
[14892] | 141 | } catch (alglib.alglibexception ae) {
|
---|
[14386] | 142 | // wrap exception so that calling code doesn't have to know about alglib implementation
|
---|
[14887] | 143 | throw new ArgumentException("There was a problem in the calculation of the kernel ridge regression model", ae);
|
---|
[14386] | 144 | }
|
---|
[15164] | 145 | return model;
|
---|
[14386] | 146 | }
|
---|
[14872] | 147 |
|
---|
[15164] | 148 | private KernelRidgeRegressionModel(IDataset dataset, string targetVariable, IEnumerable<string> allowedInputVariables, int[] rows,
|
---|
| 149 | bool scaleInputs, ICovarianceFunction kernel, double lambda = 0.1) : base(targetVariable) {
|
---|
| 150 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
| 151 | if (kernel.GetNumberOfParameters(this.allowedInputVariables.Length) > 0) throw new ArgumentException("All parameters in the kernel function must be specified.");
|
---|
| 152 | name = ItemName;
|
---|
| 153 | description = ItemDescription;
|
---|
[14887] | 154 |
|
---|
[15164] | 155 | this.kernel = (ICovarianceFunction)kernel.Clone();
|
---|
| 156 | this.lambda = lambda;
|
---|
| 157 | if (scaleInputs) scaling = CreateScaling(dataset, rows, this.allowedInputVariables);
|
---|
| 158 | trainX = ExtractData(dataset, rows, this.allowedInputVariables, scaling);
|
---|
| 159 | var y = dataset.GetDoubleValues(targetVariable, rows).ToArray();
|
---|
| 160 | yOffset = y.Average();
|
---|
| 161 | yScale = 1.0 / y.StandardDeviation();
|
---|
| 162 | alpha = new double[trainX.GetLength(0)];
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 |
|
---|
[14887] | 166 | #region IRegressionModel Members
|
---|
| 167 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[15164] | 168 | var newX = ExtractData(dataset, rows, allowedInputVariables, scaling);
|
---|
[14887] | 169 | var dim = newX.GetLength(1);
|
---|
| 170 | var cov = kernel.GetParameterizedCovarianceFunction(new double[0], Enumerable.Range(0, dim).ToArray());
|
---|
| 171 |
|
---|
| 172 | var pred = new double[newX.GetLength(0)];
|
---|
| 173 | for (int i = 0; i < pred.Length; i++) {
|
---|
| 174 | double sum = 0.0;
|
---|
| 175 | for (int j = 0; j < alpha.Length; j++) {
|
---|
| 176 | sum += alpha[j] * cov.CrossCovariance(trainX, newX, j, i);
|
---|
| 177 | }
|
---|
| 178 | pred[i] = sum / yScale + yOffset;
|
---|
| 179 | }
|
---|
| 180 | return pred;
|
---|
| 181 | }
|
---|
| 182 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 183 | return new RegressionSolution(this, new RegressionProblemData(problemData));
|
---|
| 184 | }
|
---|
| 185 | #endregion
|
---|
| 186 |
|
---|
| 187 | #region helpers
|
---|
[15164] | 188 | private static double[,] BuildGramMatrix(double[,] data, double lambda, ICovarianceFunction kernel) {
|
---|
[14887] | 189 | var n = data.GetLength(0);
|
---|
| 190 | var dim = data.GetLength(1);
|
---|
| 191 | var cov = kernel.GetParameterizedCovarianceFunction(new double[0], Enumerable.Range(0, dim).ToArray());
|
---|
| 192 | var gram = new double[n, n];
|
---|
| 193 | // G = (K + λ I)
|
---|
| 194 | for (var i = 0; i < n; i++) {
|
---|
| 195 | for (var j = i; j < n; j++) {
|
---|
[14888] | 196 | gram[i, j] = gram[j, i] = cov.Covariance(data, i, j); // symmetric matrix
|
---|
[14887] | 197 | }
|
---|
| 198 | gram[i, i] += lambda;
|
---|
| 199 | }
|
---|
| 200 | return gram;
|
---|
| 201 | }
|
---|
| 202 |
|
---|
[15164] | 203 | private static ITransformation<double>[] CreateScaling(IDataset dataset, int[] rows, IReadOnlyCollection<string> allowedInputVariables) {
|
---|
| 204 | var trans = new ITransformation<double>[allowedInputVariables.Count];
|
---|
[14872] | 205 | int i = 0;
|
---|
| 206 | foreach (var variable in allowedInputVariables) {
|
---|
| 207 | var lin = new LinearTransformation(allowedInputVariables);
|
---|
| 208 | var max = dataset.GetDoubleValues(variable, rows).Max();
|
---|
| 209 | var min = dataset.GetDoubleValues(variable, rows).Min();
|
---|
| 210 | lin.Multiplier = 1.0 / (max - min);
|
---|
| 211 | lin.Addend = -min / (max - min);
|
---|
| 212 | trans[i] = lin;
|
---|
| 213 | i++;
|
---|
| 214 | }
|
---|
| 215 | return trans;
|
---|
[14386] | 216 | }
|
---|
| 217 |
|
---|
[15164] | 218 | private static double[,] ExtractData(IDataset dataset, IEnumerable<int> rows, IReadOnlyCollection<string> allowedInputVariables, ITransformation<double>[] scaling = null) {
|
---|
[14872] | 219 | double[][] variables;
|
---|
| 220 | if (scaling != null) {
|
---|
| 221 | variables =
|
---|
| 222 | allowedInputVariables.Select((var, i) => scaling[i].Apply(dataset.GetDoubleValues(var, rows)).ToArray())
|
---|
| 223 | .ToArray();
|
---|
| 224 | } else {
|
---|
| 225 | variables =
|
---|
| 226 | allowedInputVariables.Select(var => dataset.GetDoubleValues(var, rows).ToArray()).ToArray();
|
---|
| 227 | }
|
---|
| 228 | int n = variables.First().Length;
|
---|
| 229 | var res = new double[n, variables.Length];
|
---|
| 230 | for (int r = 0; r < n; r++)
|
---|
| 231 | for (int c = 0; c < variables.Length; c++) {
|
---|
| 232 | res[r, c] = variables[c][r];
|
---|
| 233 | }
|
---|
| 234 | return res;
|
---|
| 235 | }
|
---|
[14386] | 236 | #endregion
|
---|
| 237 | }
|
---|
| 238 | }
|
---|