1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 | #endregion
|
---|
22 |
|
---|
23 | using System;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Diagnostics;
|
---|
26 | using System.Linq;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | // This class implements a greedy decision tree learner which selects splits with the maximum reduction in sum of squared errors.
|
---|
32 | // The tree builder also tracks variable relevance metrics based on the splits and improvement after the split.
|
---|
33 | // The implementation is tuned for gradient boosting where multiple trees have to be calculated for the same training data
|
---|
34 | // each time with a different target vector. Vectors of idx to allow iteration of intput variables in sorted order are
|
---|
35 | // pre-calculated so that optimal thresholds for splits can be calculated in O(n) for each input variable.
|
---|
36 | // After each split the row idx are partitioned in a left an right part.
|
---|
37 | internal class RegressionTreeBuilder {
|
---|
38 | private readonly IRandom random;
|
---|
39 | private readonly IRegressionProblemData problemData;
|
---|
40 |
|
---|
41 | private readonly int nCols;
|
---|
42 | private readonly double[][] x; // all training data (original order from problemData), x is constant
|
---|
43 | private double[] originalY; // the original target labels (from problemData), originalY is constant
|
---|
44 | private double[] curPred; // current predictions for originalY (in case we are using gradient boosting, otherwise = zeros), only necessary for line search
|
---|
45 |
|
---|
46 | private double[] y; // training labels (original order from problemData), y can be changed
|
---|
47 |
|
---|
48 | private Dictionary<string, double> sumImprovements; // for variable relevance calculation
|
---|
49 |
|
---|
50 | private readonly string[] allowedVariables; // all variables in shuffled order
|
---|
51 | private Dictionary<string, int> varName2Index; // maps the variable names to column indexes
|
---|
52 | private int effectiveVars; // number of variables that are used from allowedVariables
|
---|
53 |
|
---|
54 | private int effectiveRows; // number of rows that are used from
|
---|
55 | private readonly int[][] sortedIdxAll;
|
---|
56 | private readonly int[][] sortedIdx; // random selection from sortedIdxAll (for r < 1.0)
|
---|
57 |
|
---|
58 | // helper arrays which are allocated to maximal necessary size only once in the ctor
|
---|
59 | private readonly int[] internalIdx, which, leftTmp, rightTmp;
|
---|
60 | private readonly double[] outx;
|
---|
61 | private readonly int[] outSortedIdx;
|
---|
62 |
|
---|
63 | private RegressionTreeModel.TreeNode[] tree; // tree is represented as a flat array of nodes
|
---|
64 | private int curTreeNodeIdx; // the index where the next tree node is stored
|
---|
65 |
|
---|
66 | // This class represents information about potential splits.
|
---|
67 | // For each node generated the best splitting variable and threshold as well as
|
---|
68 | // the improvement from the split are stored in a priority queue
|
---|
69 | private class PartitionSplits {
|
---|
70 | public int ParentNodeIdx { get; set; } // the idx of the leaf node representing this partition
|
---|
71 | public int StartIdx { get; set; } // the start idx of the partition
|
---|
72 | public int EndIndex { get; set; } // the end idx of the partition
|
---|
73 | public string SplittingVariable { get; set; } // the best splitting variable
|
---|
74 | public double SplittingThreshold { get; set; } // the best threshold
|
---|
75 | public double SplittingImprovement { get; set; } // the improvement of the split (for priority queue)
|
---|
76 | }
|
---|
77 |
|
---|
78 | // this list hold partitions with the information about the best split (organized as a sorted queue)
|
---|
79 | private readonly IList<PartitionSplits> queue;
|
---|
80 |
|
---|
81 | // prepare and allocate buffer variables in ctor
|
---|
82 | public RegressionTreeBuilder(IRegressionProblemData problemData, IRandom random) {
|
---|
83 | this.problemData = problemData;
|
---|
84 | this.random = random;
|
---|
85 |
|
---|
86 | var rows = problemData.TrainingIndices.Count();
|
---|
87 |
|
---|
88 | this.nCols = problemData.AllowedInputVariables.Count();
|
---|
89 |
|
---|
90 | allowedVariables = problemData.AllowedInputVariables.ToArray();
|
---|
91 | varName2Index = new Dictionary<string, int>(allowedVariables.Length);
|
---|
92 | for (int i = 0; i < allowedVariables.Length; i++) varName2Index.Add(allowedVariables[i], i);
|
---|
93 |
|
---|
94 | sortedIdxAll = new int[nCols][];
|
---|
95 | sortedIdx = new int[nCols][];
|
---|
96 | sumImprovements = new Dictionary<string, double>();
|
---|
97 | internalIdx = new int[rows];
|
---|
98 | which = new int[rows];
|
---|
99 | leftTmp = new int[rows];
|
---|
100 | rightTmp = new int[rows];
|
---|
101 | outx = new double[rows];
|
---|
102 | outSortedIdx = new int[rows];
|
---|
103 | queue = new List<PartitionSplits>(100);
|
---|
104 |
|
---|
105 | x = new double[nCols][];
|
---|
106 | originalY = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray();
|
---|
107 | y = new double[originalY.Length];
|
---|
108 | Array.Copy(originalY, y, y.Length); // copy values (originalY is fixed, y is changed in gradient boosting)
|
---|
109 | curPred = Enumerable.Repeat(0.0, y.Length).ToArray(); // zeros
|
---|
110 |
|
---|
111 | int col = 0;
|
---|
112 | foreach (var inputVariable in problemData.AllowedInputVariables) {
|
---|
113 | x[col] = problemData.Dataset.GetDoubleValues(inputVariable, problemData.TrainingIndices).ToArray();
|
---|
114 | sortedIdxAll[col] = Enumerable.Range(0, rows).OrderBy(r => x[col][r]).ToArray();
|
---|
115 | sortedIdx[col] = new int[rows];
|
---|
116 | col++;
|
---|
117 | }
|
---|
118 | }
|
---|
119 |
|
---|
120 | // specific interface that allows to specify the target labels and the training rows which is necessary when for gradient boosted trees
|
---|
121 | public IRegressionModel CreateRegressionTreeForGradientBoosting(double[] y, double[] curPred, int maxSize, int[] idx, ILossFunction lossFunction, double r = 0.5, double m = 0.5) {
|
---|
122 | Debug.Assert(maxSize > 0);
|
---|
123 | Debug.Assert(r > 0);
|
---|
124 | Debug.Assert(r <= 1.0);
|
---|
125 | Debug.Assert(y.Count() == this.y.Length);
|
---|
126 | Debug.Assert(m > 0);
|
---|
127 | Debug.Assert(m <= 1.0);
|
---|
128 |
|
---|
129 | // y and curPred are changed in gradient boosting
|
---|
130 | this.y = y;
|
---|
131 | this.curPred = curPred;
|
---|
132 |
|
---|
133 | // shuffle row idx
|
---|
134 | HeuristicLab.Random.ListExtensions.ShuffleInPlace(idx, random);
|
---|
135 |
|
---|
136 | int nRows = idx.Count();
|
---|
137 |
|
---|
138 | // shuffle variable names
|
---|
139 | HeuristicLab.Random.ListExtensions.ShuffleInPlace(allowedVariables, random);
|
---|
140 |
|
---|
141 | // only select a part of the rows and columns randomly
|
---|
142 | effectiveRows = (int)Math.Ceiling(nRows * r);
|
---|
143 | effectiveVars = (int)Math.Ceiling(nCols * m);
|
---|
144 |
|
---|
145 | // the which array is used for partitioing row idxs
|
---|
146 | Array.Clear(which, 0, which.Length);
|
---|
147 |
|
---|
148 | // mark selected rows
|
---|
149 | for (int row = 0; row < effectiveRows; row++) {
|
---|
150 | which[idx[row]] = 1; // we use the which vector as a temporary variable here
|
---|
151 | internalIdx[row] = idx[row];
|
---|
152 | }
|
---|
153 |
|
---|
154 | for (int col = 0; col < nCols; col++) {
|
---|
155 | int i = 0;
|
---|
156 | for (int row = 0; row < nRows; row++) {
|
---|
157 | if (which[sortedIdxAll[col][row]] > 0) {
|
---|
158 | Debug.Assert(i < effectiveRows);
|
---|
159 | sortedIdx[col][i] = sortedIdxAll[col][row];
|
---|
160 | i++;
|
---|
161 | }
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | this.tree = new RegressionTreeModel.TreeNode[maxSize];
|
---|
166 | this.queue.Clear();
|
---|
167 | this.curTreeNodeIdx = 0;
|
---|
168 |
|
---|
169 | // start out with only one leaf node (constant prediction)
|
---|
170 | // and calculate the best split for this root node and enqueue it into a queue sorted by improvement throught the split
|
---|
171 | // start and end idx are inclusive
|
---|
172 | CreateLeafNode(0, effectiveRows - 1, lossFunction);
|
---|
173 |
|
---|
174 | // process the priority queue to complete the tree
|
---|
175 | CreateRegressionTreeFromQueue(maxSize, lossFunction);
|
---|
176 |
|
---|
177 | return new RegressionTreeModel(tree.ToArray(), problemData.TargetVariable);
|
---|
178 | }
|
---|
179 |
|
---|
180 |
|
---|
181 | // processes potential splits from the queue as long as splits are remaining and the maximum size of the tree is not reached
|
---|
182 | private void CreateRegressionTreeFromQueue(int maxNodes, ILossFunction lossFunction) {
|
---|
183 | while (queue.Any() && curTreeNodeIdx + 1 < maxNodes) { // two nodes are created in each loop
|
---|
184 | var f = queue[queue.Count - 1]; // last element has the largest improvement
|
---|
185 | queue.RemoveAt(queue.Count - 1);
|
---|
186 |
|
---|
187 | var startIdx = f.StartIdx;
|
---|
188 | var endIdx = f.EndIndex;
|
---|
189 |
|
---|
190 | Debug.Assert(endIdx - startIdx >= 0);
|
---|
191 | Debug.Assert(startIdx >= 0);
|
---|
192 | Debug.Assert(endIdx < internalIdx.Length);
|
---|
193 |
|
---|
194 | // split partition into left and right
|
---|
195 | int splitIdx;
|
---|
196 | SplitPartition(f.StartIdx, f.EndIndex, f.SplittingVariable, f.SplittingThreshold, out splitIdx);
|
---|
197 | Debug.Assert(splitIdx + 1 <= endIdx);
|
---|
198 | Debug.Assert(startIdx <= splitIdx);
|
---|
199 |
|
---|
200 | // create two leaf nodes (and enqueue best splits for both)
|
---|
201 | var leftTreeIdx = CreateLeafNode(startIdx, splitIdx, lossFunction);
|
---|
202 | var rightTreeIdx = CreateLeafNode(splitIdx + 1, endIdx, lossFunction);
|
---|
203 |
|
---|
204 | // overwrite existing leaf node with an internal node
|
---|
205 | tree[f.ParentNodeIdx] = new RegressionTreeModel.TreeNode(f.SplittingVariable, f.SplittingThreshold, leftTreeIdx, rightTreeIdx, weightLeft: (splitIdx - startIdx + 1) / (double)(endIdx - startIdx + 1));
|
---|
206 | }
|
---|
207 | }
|
---|
208 |
|
---|
209 |
|
---|
210 | // returns the index of the newly created tree node
|
---|
211 | private int CreateLeafNode(int startIdx, int endIdx, ILossFunction lossFunction) {
|
---|
212 | // write a leaf node
|
---|
213 | var val = lossFunction.LineSearch(originalY, curPred, internalIdx, startIdx, endIdx);
|
---|
214 | tree[curTreeNodeIdx] = new RegressionTreeModel.TreeNode(RegressionTreeModel.TreeNode.NO_VARIABLE, val);
|
---|
215 |
|
---|
216 | EnqueuePartitionSplit(curTreeNodeIdx, startIdx, endIdx);
|
---|
217 | curTreeNodeIdx++;
|
---|
218 | return curTreeNodeIdx - 1;
|
---|
219 | }
|
---|
220 |
|
---|
221 |
|
---|
222 | // calculates the optimal split for the partition [startIdx .. endIdx] (inclusive)
|
---|
223 | // which is represented by the leaf node with the specified nodeIdx
|
---|
224 | private void EnqueuePartitionSplit(int nodeIdx, int startIdx, int endIdx) {
|
---|
225 | double threshold, improvement;
|
---|
226 | string bestVariableName;
|
---|
227 | // only enqueue a new split if there are at least 2 rows left and a split is possible
|
---|
228 | if (startIdx < endIdx &&
|
---|
229 | FindBestVariableAndThreshold(startIdx, endIdx, out threshold, out bestVariableName, out improvement)) {
|
---|
230 | var split = new PartitionSplits() {
|
---|
231 | ParentNodeIdx = nodeIdx,
|
---|
232 | StartIdx = startIdx,
|
---|
233 | EndIndex = endIdx,
|
---|
234 | SplittingThreshold = threshold,
|
---|
235 | SplittingVariable = bestVariableName
|
---|
236 | };
|
---|
237 | InsertSortedQueue(split);
|
---|
238 | }
|
---|
239 | }
|
---|
240 |
|
---|
241 |
|
---|
242 | // routine for splitting a partition of rows stored in internalIdx between startIdx and endIdx into
|
---|
243 | // a left partition and a right partition using the given splittingVariable and threshold
|
---|
244 | // the splitIdx is the last index of the left partition
|
---|
245 | // splitIdx + 1 is the first index of the right partition
|
---|
246 | // startIdx and endIdx are inclusive
|
---|
247 | private void SplitPartition(int startIdx, int endIdx, string splittingVar, double threshold, out int splitIdx) {
|
---|
248 | int bestVarIdx = varName2Index[splittingVar];
|
---|
249 | // split - two pass
|
---|
250 |
|
---|
251 | // store which index goes into which partition
|
---|
252 | for (int k = startIdx; k <= endIdx; k++) {
|
---|
253 | if (x[bestVarIdx][internalIdx[k]] <= threshold)
|
---|
254 | which[internalIdx[k]] = -1; // left partition
|
---|
255 | else
|
---|
256 | which[internalIdx[k]] = 1; // right partition
|
---|
257 | }
|
---|
258 |
|
---|
259 | // partition sortedIdx for each variable
|
---|
260 | int i;
|
---|
261 | int j;
|
---|
262 | for (int col = 0; col < nCols; col++) {
|
---|
263 | i = 0;
|
---|
264 | j = 0;
|
---|
265 | int k;
|
---|
266 | for (k = startIdx; k <= endIdx; k++) {
|
---|
267 | Debug.Assert(Math.Abs(which[sortedIdx[col][k]]) == 1);
|
---|
268 |
|
---|
269 | if (which[sortedIdx[col][k]] < 0) {
|
---|
270 | leftTmp[i++] = sortedIdx[col][k];
|
---|
271 | } else {
|
---|
272 | rightTmp[j++] = sortedIdx[col][k];
|
---|
273 | }
|
---|
274 | }
|
---|
275 | Debug.Assert(i > 0); // at least on element in the left partition
|
---|
276 | Debug.Assert(j > 0); // at least one element in the right partition
|
---|
277 | Debug.Assert(i + j == endIdx - startIdx + 1);
|
---|
278 | k = startIdx;
|
---|
279 | for (int l = 0; l < i; l++) sortedIdx[col][k++] = leftTmp[l];
|
---|
280 | for (int l = 0; l < j; l++) sortedIdx[col][k++] = rightTmp[l];
|
---|
281 | }
|
---|
282 |
|
---|
283 | // partition row indices
|
---|
284 | i = startIdx;
|
---|
285 | j = endIdx;
|
---|
286 | while (i <= j) {
|
---|
287 | Debug.Assert(Math.Abs(which[internalIdx[i]]) == 1);
|
---|
288 | Debug.Assert(Math.Abs(which[internalIdx[j]]) == 1);
|
---|
289 | if (which[internalIdx[i]] < 0) i++;
|
---|
290 | else if (which[internalIdx[j]] > 0) j--;
|
---|
291 | else {
|
---|
292 | Debug.Assert(which[internalIdx[i]] > 0);
|
---|
293 | Debug.Assert(which[internalIdx[j]] < 0);
|
---|
294 | // swap
|
---|
295 | int tmp = internalIdx[i];
|
---|
296 | internalIdx[i] = internalIdx[j];
|
---|
297 | internalIdx[j] = tmp;
|
---|
298 | i++;
|
---|
299 | j--;
|
---|
300 | }
|
---|
301 | }
|
---|
302 | Debug.Assert(j + 1 == i);
|
---|
303 | Debug.Assert(i <= endIdx);
|
---|
304 | Debug.Assert(startIdx <= j);
|
---|
305 |
|
---|
306 | splitIdx = j;
|
---|
307 | }
|
---|
308 |
|
---|
309 | private bool FindBestVariableAndThreshold(int startIdx, int endIdx, out double threshold, out string bestVar, out double improvement) {
|
---|
310 | Debug.Assert(startIdx < endIdx + 1); // at least 2 elements
|
---|
311 |
|
---|
312 | int rows = endIdx - startIdx + 1;
|
---|
313 | Debug.Assert(rows >= 2);
|
---|
314 |
|
---|
315 | double sumY = 0.0;
|
---|
316 | for (int i = startIdx; i <= endIdx; i++) {
|
---|
317 | sumY += y[internalIdx[i]];
|
---|
318 | }
|
---|
319 |
|
---|
320 | // see description of calculation in FindBestThreshold
|
---|
321 | double bestImprovement = 1.0 / rows * sumY * sumY; // any improvement must be larger than this baseline
|
---|
322 | double bestThreshold = double.PositiveInfinity;
|
---|
323 | bestVar = RegressionTreeModel.TreeNode.NO_VARIABLE;
|
---|
324 |
|
---|
325 | for (int col = 0; col < effectiveVars; col++) {
|
---|
326 | // sort values for variable to prepare for threshold selection
|
---|
327 | var curVariable = allowedVariables[col];
|
---|
328 | var curVariableIdx = varName2Index[curVariable];
|
---|
329 | for (int i = startIdx; i <= endIdx; i++) {
|
---|
330 | var sortedI = sortedIdx[curVariableIdx][i];
|
---|
331 | outSortedIdx[i - startIdx] = sortedI;
|
---|
332 | outx[i - startIdx] = x[curVariableIdx][sortedI];
|
---|
333 | }
|
---|
334 |
|
---|
335 | double curImprovement;
|
---|
336 | double curThreshold;
|
---|
337 | FindBestThreshold(outx, outSortedIdx, rows, y, sumY, out curThreshold, out curImprovement);
|
---|
338 |
|
---|
339 | if (curImprovement > bestImprovement) {
|
---|
340 | bestImprovement = curImprovement;
|
---|
341 | bestThreshold = curThreshold;
|
---|
342 | bestVar = allowedVariables[col];
|
---|
343 | }
|
---|
344 | }
|
---|
345 | if (bestVar == RegressionTreeModel.TreeNode.NO_VARIABLE) {
|
---|
346 | // not successfull
|
---|
347 | threshold = double.PositiveInfinity;
|
---|
348 | improvement = double.NegativeInfinity;
|
---|
349 | return false;
|
---|
350 | } else {
|
---|
351 | UpdateVariableRelevance(bestVar, sumY, bestImprovement, rows);
|
---|
352 | improvement = bestImprovement;
|
---|
353 | threshold = bestThreshold;
|
---|
354 | return true;
|
---|
355 | }
|
---|
356 | }
|
---|
357 |
|
---|
358 | // x [0..N-1] contains rows sorted values in the range from [0..rows-1]
|
---|
359 | // sortedIdx [0..N-1] contains the idx of the values in x in the original dataset in the range from [0..rows-1]
|
---|
360 | // rows specifies the number of valid entries in x and sortedIdx
|
---|
361 | // y [0..N-1] contains the target values in original sorting order
|
---|
362 | // sumY is y.Sum()
|
---|
363 | //
|
---|
364 | // the routine returns the best threshold (x[i] + x[i+1]) / 2 for i = [0 .. rows-2] by calculating the reduction in squared error
|
---|
365 | // additionally the reduction in squared error is returned in bestImprovement
|
---|
366 | // if all elements of x are equal the routing fails to produce a threshold
|
---|
367 | private static void FindBestThreshold(double[] x, int[] sortedIdx, int rows, double[] y, double sumY, out double bestThreshold, out double bestImprovement) {
|
---|
368 | Debug.Assert(rows >= 2);
|
---|
369 |
|
---|
370 | double sl = 0.0;
|
---|
371 | double sr = sumY;
|
---|
372 | double nl = 0.0;
|
---|
373 | double nr = rows;
|
---|
374 |
|
---|
375 | bestImprovement = 1.0 / rows * sumY * sumY; // this is the baseline for the improvement
|
---|
376 | bestThreshold = double.NegativeInfinity;
|
---|
377 | // for all thresholds
|
---|
378 | // if we have n rows there are n-1 possible splits
|
---|
379 | for (int i = 0; i < rows - 1; i++) {
|
---|
380 | sl += y[sortedIdx[i]];
|
---|
381 | sr -= y[sortedIdx[i]];
|
---|
382 |
|
---|
383 | nl++;
|
---|
384 | nr--;
|
---|
385 | Debug.Assert(nl > 0);
|
---|
386 | Debug.Assert(nr > 0);
|
---|
387 |
|
---|
388 | if (x[i] < x[i + 1]) { // don't try to split when two elements are equal
|
---|
389 |
|
---|
390 | // goal is to find the split with leading to minimal total variance of left and right parts
|
---|
391 | // without partitioning the variance is var(y) = E(y²) - E(y)²
|
---|
392 | // = 1/n * sum(y²) - (1/n * sum(y))²
|
---|
393 | // ------------- ---------------
|
---|
394 | // constant baseline for improvement
|
---|
395 | //
|
---|
396 | // if we split into right and left part the overall variance is the weigthed combination nl/n * var(y_l) + nr/n * var(y_r)
|
---|
397 | // = nl/n * (1/nl * sum(y_l²) - (1/nl * sum(y_l))²) + nr/n * (1/nr * sum(y_r²) - (1/nr * sum(y_r))²)
|
---|
398 | // = 1/n * sum(y_l²) - 1/nl * 1/n * sum(y_l)² + 1/n * sum(y_r²) - 1/nr * 1/n * sum(y_r)²
|
---|
399 | // = 1/n * (sum(y_l²) + sum(y_r²)) - 1/n * (sum(y_l)² / nl + sum(y_r)² / nr)
|
---|
400 | // = 1/n * sum(y²) - 1/n * (sum(y_l)² / nl + sum(y_r)² / nr)
|
---|
401 | // -------------
|
---|
402 | // not changed by split (and the same for total variance without partitioning)
|
---|
403 | //
|
---|
404 | // therefore we need to find the maximum value (sum(y_l)² / nl + sum(y_r)² / nr) (ignoring the factor 1/n)
|
---|
405 | // and this value must be larger than 1/n * sum(y)² to be an improvement over no split
|
---|
406 |
|
---|
407 | double curQuality = sl * sl / nl + sr * sr / nr;
|
---|
408 |
|
---|
409 | if (curQuality > bestImprovement) {
|
---|
410 | bestThreshold = (x[i] + x[i + 1]) / 2.0;
|
---|
411 | bestImprovement = curQuality;
|
---|
412 | }
|
---|
413 | }
|
---|
414 | }
|
---|
415 |
|
---|
416 | // if all elements where the same then no split can be found
|
---|
417 | }
|
---|
418 |
|
---|
419 |
|
---|
420 | private void UpdateVariableRelevance(string bestVar, double sumY, double bestImprovement, int rows) {
|
---|
421 | if (string.IsNullOrEmpty(bestVar)) return;
|
---|
422 | // update variable relevance
|
---|
423 | double baseLine = 1.0 / rows * sumY * sumY; // if best improvement is equal to baseline then the split had no effect
|
---|
424 |
|
---|
425 | double delta = (bestImprovement - baseLine);
|
---|
426 | double v;
|
---|
427 | if (!sumImprovements.TryGetValue(bestVar, out v)) {
|
---|
428 | sumImprovements[bestVar] = delta;
|
---|
429 | }
|
---|
430 | sumImprovements[bestVar] = v + delta;
|
---|
431 | }
|
---|
432 |
|
---|
433 | public IEnumerable<KeyValuePair<string, double>> GetVariableRelevance() {
|
---|
434 | // values are scaled: the most important variable has relevance = 100
|
---|
435 | double scaling = 100 / sumImprovements.Max(t => t.Value);
|
---|
436 | return
|
---|
437 | sumImprovements
|
---|
438 | .Select(t => new KeyValuePair<string, double>(t.Key, t.Value * scaling))
|
---|
439 | .OrderByDescending(t => t.Value);
|
---|
440 | }
|
---|
441 |
|
---|
442 |
|
---|
443 | // insert a new parition split (find insertion point and start at first element of the queue)
|
---|
444 | // elements are removed from the queue at the last position
|
---|
445 | // O(n), splits could be organized as a heap to improve runtime (see alglib tsort)
|
---|
446 | private void InsertSortedQueue(PartitionSplits split) {
|
---|
447 | // find insertion position
|
---|
448 | int i = 0;
|
---|
449 | while (i < queue.Count && queue[i].SplittingImprovement < split.SplittingImprovement) { i++; }
|
---|
450 |
|
---|
451 | queue.Insert(i, split);
|
---|
452 | }
|
---|
453 | }
|
---|
454 | }
|
---|
455 |
|
---|
456 |
|
---|
457 |
|
---|
458 |
|
---|
459 |
|
---|
460 |
|
---|
461 |
|
---|
462 |
|
---|
463 |
|
---|
464 |
|
---|
465 |
|
---|
466 |
|
---|
467 |
|
---|
468 |
|
---|
469 |
|
---|
470 |
|
---|
471 |
|
---|
472 |
|
---|
473 |
|
---|