1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 | #endregion
|
---|
22 |
|
---|
23 | using System;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HEAL.Attic;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | [StorableType("5D02E552-B96E-4267-858B-22339D8CB6B2")]
|
---|
31 | [Item("Squared error loss", "")]
|
---|
32 | public sealed class SquaredErrorLoss : Item, ILossFunction {
|
---|
33 | public SquaredErrorLoss() { }
|
---|
34 |
|
---|
35 | public double GetLoss(IEnumerable<double> target, IEnumerable<double> pred) {
|
---|
36 | var targetEnum = target.GetEnumerator();
|
---|
37 | var predEnum = pred.GetEnumerator();
|
---|
38 |
|
---|
39 | double s = 0;
|
---|
40 | while (targetEnum.MoveNext() & predEnum.MoveNext()) {
|
---|
41 | double res = targetEnum.Current - predEnum.Current;
|
---|
42 | s += res * res; // (res)^2
|
---|
43 | }
|
---|
44 | if (targetEnum.MoveNext() | predEnum.MoveNext())
|
---|
45 | throw new ArgumentException("target and pred have different lengths");
|
---|
46 |
|
---|
47 | return s;
|
---|
48 | }
|
---|
49 |
|
---|
50 | public IEnumerable<double> GetLossGradient(IEnumerable<double> target, IEnumerable<double> pred) {
|
---|
51 | var targetEnum = target.GetEnumerator();
|
---|
52 | var predEnum = pred.GetEnumerator();
|
---|
53 |
|
---|
54 | while (targetEnum.MoveNext() & predEnum.MoveNext()) {
|
---|
55 | yield return 2.0 * (targetEnum.Current - predEnum.Current); // dL(y, f(x)) / df(x) = 2 * res
|
---|
56 | }
|
---|
57 | if (targetEnum.MoveNext() | predEnum.MoveNext())
|
---|
58 | throw new ArgumentException("target and pred have different lengths");
|
---|
59 | }
|
---|
60 |
|
---|
61 | // targetArr and predArr are not changed by LineSearch
|
---|
62 | public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) {
|
---|
63 | if (targetArr.Length != predArr.Length)
|
---|
64 | throw new ArgumentException("target and pred have different lengths");
|
---|
65 |
|
---|
66 | // line search for squared error loss
|
---|
67 | // for a given partition of rows the optimal constant that should be added to the current prediction values is the average of the residuals
|
---|
68 | double s = 0.0;
|
---|
69 | int n = 0;
|
---|
70 | for (int i = startIdx; i <= endIdx; i++) {
|
---|
71 | int row = idx[i];
|
---|
72 | s += (targetArr[row] - predArr[row]);
|
---|
73 | n++;
|
---|
74 | }
|
---|
75 | return s / n;
|
---|
76 | }
|
---|
77 |
|
---|
78 | #region item implementation
|
---|
79 | [StorableConstructor]
|
---|
80 | private SquaredErrorLoss(StorableConstructorFlag _) : base(_) { }
|
---|
81 |
|
---|
82 | private SquaredErrorLoss(SquaredErrorLoss original, Cloner cloner) : base(original, cloner) { }
|
---|
83 |
|
---|
84 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
85 | return new SquaredErrorLoss(this, cloner);
|
---|
86 | }
|
---|
87 | #endregion
|
---|
88 | }
|
---|
89 | }
|
---|