[12590] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12590] | 4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
| 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 |
|
---|
| 23 | using System;
|
---|
[12332] | 24 | using System.Collections.Generic;
|
---|
| 25 | using System.Linq;
|
---|
| 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
[16565] | 28 | using HEAL.Attic;
|
---|
[12332] | 29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 30 |
|
---|
[12590] | 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[16565] | 32 | [StorableType("4EC1B359-D145-434C-A373-3EDD764D2D63")]
|
---|
[15105] | 33 | [Item("Gradient boosted trees model", "")]
|
---|
[12590] | 34 | // this is essentially a collection of weighted regression models
|
---|
[13941] | 35 | public sealed class GradientBoostedTreesModel : RegressionModel, IGradientBoostedTreesModel {
|
---|
[12868] | 36 | [Storable(Name = "models")]
|
---|
| 37 | private IList<IRegressionModel> __persistedModels {
|
---|
| 38 | set {
|
---|
| 39 | this.models.Clear();
|
---|
| 40 | foreach (var m in value) this.models.Add(m);
|
---|
| 41 | }
|
---|
[17030] | 42 | get { return models; }
|
---|
[12868] | 43 | }
|
---|
| 44 | [Storable(Name = "weights")]
|
---|
| 45 | private IList<double> __persistedWeights {
|
---|
| 46 | set {
|
---|
| 47 | this.weights.Clear();
|
---|
| 48 | foreach (var w in value) this.weights.Add(w);
|
---|
| 49 | }
|
---|
[17030] | 50 | get { return weights; }
|
---|
[12868] | 51 | }
|
---|
| 52 |
|
---|
[13941] | 53 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
[13921] | 54 | get { return models.SelectMany(x => x.VariablesUsedForPrediction).Distinct().OrderBy(x => x); }
|
---|
| 55 | }
|
---|
| 56 |
|
---|
[12332] | 57 | private readonly IList<IRegressionModel> models;
|
---|
[12372] | 58 | public IEnumerable<IRegressionModel> Models { get { return models; } }
|
---|
| 59 |
|
---|
[12332] | 60 | private readonly IList<double> weights;
|
---|
[12372] | 61 | public IEnumerable<double> Weights { get { return weights; } }
|
---|
[12332] | 62 |
|
---|
| 63 | [StorableConstructor]
|
---|
[16565] | 64 | private GradientBoostedTreesModel(StorableConstructorFlag _) : base(_) {
|
---|
[12868] | 65 | models = new List<IRegressionModel>();
|
---|
| 66 | weights = new List<double>();
|
---|
| 67 | }
|
---|
[12332] | 68 | private GradientBoostedTreesModel(GradientBoostedTreesModel original, Cloner cloner)
|
---|
| 69 | : base(original, cloner) {
|
---|
| 70 | this.weights = new List<double>(original.weights);
|
---|
| 71 | this.models = new List<IRegressionModel>(original.models.Select(m => cloner.Clone(m)));
|
---|
| 72 | }
|
---|
[17030] | 73 |
|
---|
[13941] | 74 | internal GradientBoostedTreesModel(IEnumerable<IRegressionModel> models, IEnumerable<double> weights)
|
---|
| 75 | : base(string.Empty, "Gradient boosted tree model", string.Empty) {
|
---|
[12332] | 76 | this.models = new List<IRegressionModel>(models);
|
---|
| 77 | this.weights = new List<double>(weights);
|
---|
| 78 |
|
---|
| 79 | if (this.models.Count != this.weights.Count) throw new ArgumentException();
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 83 | return new GradientBoostedTreesModel(this, cloner);
|
---|
| 84 | }
|
---|
| 85 |
|
---|
[13941] | 86 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[12590] | 87 | // allocate target array go over all models and add up weighted estimation for each row
|
---|
[12660] | 88 | if (!rows.Any()) return Enumerable.Empty<double>(); // return immediately if rows is empty. This prevents multiple iteration over lazy rows enumerable.
|
---|
[12868] | 89 | // (which essentially looks up indexes in a dictionary)
|
---|
[12590] | 90 | var res = new double[rows.Count()];
|
---|
| 91 | for (int i = 0; i < models.Count; i++) {
|
---|
| 92 | var w = weights[i];
|
---|
| 93 | var m = models[i];
|
---|
| 94 | int r = 0;
|
---|
| 95 | foreach (var est in m.GetEstimatedValues(dataset, rows)) {
|
---|
| 96 | res[r++] += w * est;
|
---|
| 97 | }
|
---|
[12332] | 98 | }
|
---|
[12590] | 99 | return res;
|
---|
[12332] | 100 | }
|
---|
| 101 |
|
---|
[13941] | 102 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
[12332] | 103 | return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
|
---|
| 104 | }
|
---|
[13921] | 105 |
|
---|
[12332] | 106 | }
|
---|
| 107 | }
|
---|