[8401] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8401] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
[8323] | 21 | using System;
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
[16565] | 24 | using HEAL.Attic;
|
---|
[8323] | 25 |
|
---|
[8371] | 26 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[16565] | 27 | [StorableType("7B76ECDD-A7B1-450F-B542-D25E19480FC5")]
|
---|
[8323] | 28 | [Item(Name = "MeanZero", Description = "Constant zero mean function for Gaussian processes.")]
|
---|
[8612] | 29 | public sealed class MeanZero : Item, IMeanFunction {
|
---|
[8323] | 30 | [StorableConstructor]
|
---|
[16565] | 31 | private MeanZero(StorableConstructorFlag _) : base(_) { }
|
---|
[8612] | 32 | private MeanZero(MeanZero original, Cloner cloner)
|
---|
[8323] | 33 | : base(original, cloner) {
|
---|
| 34 | }
|
---|
| 35 | public MeanZero() {
|
---|
| 36 | }
|
---|
| 37 |
|
---|
[8612] | 38 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 39 | return new MeanZero(this, cloner);
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 43 | return 0;
|
---|
| 44 | }
|
---|
| 45 |
|
---|
[8982] | 46 | public void SetParameter(double[] p) {
|
---|
| 47 | if (p.Length > 0) throw new ArgumentException("No parameters allowed for zero mean function.", "p");
|
---|
[8323] | 48 | }
|
---|
| 49 |
|
---|
[13721] | 50 | public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, int[] columnIndices) {
|
---|
[8982] | 51 | if (p.Length > 0) throw new ArgumentException("No parameters allowed for zero mean function.", "p");
|
---|
| 52 | var mf = new ParameterizedMeanFunction();
|
---|
| 53 | mf.Mean = (x, i) => 0.0;
|
---|
| 54 | mf.Gradient = (x, i, k) => {
|
---|
| 55 | if (k > 0)
|
---|
| 56 | throw new ArgumentException();
|
---|
| 57 | return 0.0;
|
---|
| 58 | };
|
---|
| 59 | return mf;
|
---|
[8323] | 60 | }
|
---|
| 61 | }
|
---|
| 62 | }
|
---|