[8401] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8401] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[8323] | 22 | using System;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
[8612] | 25 | using HeuristicLab.Data;
|
---|
[8982] | 26 | using HeuristicLab.Parameters;
|
---|
[16565] | 27 | using HEAL.Attic;
|
---|
[8323] | 28 |
|
---|
[8371] | 29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[16565] | 30 | [StorableType("6E29FC23-D11B-4F32-9101-DB2BF5B2F29E")]
|
---|
[8323] | 31 | [Item(Name = "MeanConst", Description = "Constant mean function for Gaussian processes.")]
|
---|
[8612] | 32 | public sealed class MeanConst : ParameterizedNamedItem, IMeanFunction {
|
---|
[8982] | 33 | public IValueParameter<DoubleValue> ValueParameter {
|
---|
| 34 | get { return (IValueParameter<DoubleValue>)Parameters["Value"]; }
|
---|
| 35 | }
|
---|
[8473] | 36 |
|
---|
[8323] | 37 | [StorableConstructor]
|
---|
[16565] | 38 | private MeanConst(StorableConstructorFlag _) : base(_) { }
|
---|
[8612] | 39 | private MeanConst(MeanConst original, Cloner cloner)
|
---|
[8323] | 40 | : base(original, cloner) {
|
---|
| 41 | }
|
---|
| 42 | public MeanConst()
|
---|
| 43 | : base() {
|
---|
[8612] | 44 | this.name = ItemName;
|
---|
| 45 | this.description = ItemDescription;
|
---|
| 46 |
|
---|
[8982] | 47 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Value", "The constant value for the constant mean function."));
|
---|
[8323] | 48 | }
|
---|
| 49 |
|
---|
[8612] | 50 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 51 | return new MeanConst(this, cloner);
|
---|
[8323] | 52 | }
|
---|
[8612] | 53 |
|
---|
| 54 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
[8982] | 55 | return ValueParameter.Value != null ? 0 : 1;
|
---|
[8612] | 56 | }
|
---|
| 57 |
|
---|
[8982] | 58 | public void SetParameter(double[] p) {
|
---|
| 59 | double c;
|
---|
| 60 | GetParameters(p, out c);
|
---|
| 61 | ValueParameter.Value = new DoubleValue(c);
|
---|
[8612] | 62 | }
|
---|
| 63 |
|
---|
[8982] | 64 | private void GetParameters(double[] p, out double c) {
|
---|
| 65 | if (ValueParameter.Value == null) {
|
---|
| 66 | c = p[0];
|
---|
| 67 | } else {
|
---|
| 68 | if (p.Length > 0)
|
---|
| 69 | throw new ArgumentException(
|
---|
| 70 | "The length of the parameter vector does not match the number of free parameters for the constant mean function.",
|
---|
| 71 | "p");
|
---|
| 72 | c = ValueParameter.Value.Value;
|
---|
| 73 | }
|
---|
[8323] | 74 | }
|
---|
| 75 |
|
---|
[13721] | 76 | public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, int[] columnIndices) {
|
---|
[8982] | 77 | double c;
|
---|
| 78 | GetParameters(p, out c);
|
---|
| 79 | var mf = new ParameterizedMeanFunction();
|
---|
| 80 | mf.Mean = (x, i) => c;
|
---|
| 81 | mf.Gradient = (x, i, k) => {
|
---|
| 82 | if (k > 0) throw new ArgumentException();
|
---|
| 83 | return 1.0;
|
---|
| 84 | };
|
---|
| 85 | return mf;
|
---|
[8323] | 86 | }
|
---|
| 87 | }
|
---|
| 88 | }
|
---|