[9096] | 1 |
|
---|
| 2 | #region License Information
|
---|
| 3 | /* HeuristicLab
|
---|
[16565] | 4 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9096] | 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 |
|
---|
[14434] | 23 | using System.Linq;
|
---|
[9096] | 24 | using HeuristicLab.Algorithms.GradientDescent;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
[16565] | 31 | using HEAL.Attic;
|
---|
[9096] | 32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 35 | /// <summary>
|
---|
| 36 | /// Base class for Gaussian process data analysis algorithms (regression and classification).
|
---|
| 37 | /// </summary>
|
---|
[16565] | 38 | [StorableType("A5070F15-8E44-44DC-92E1-000826E933D3")]
|
---|
[9096] | 39 | public abstract class GaussianProcessBase : EngineAlgorithm {
|
---|
| 40 | protected const string MeanFunctionParameterName = "MeanFunction";
|
---|
| 41 | protected const string CovarianceFunctionParameterName = "CovarianceFunction";
|
---|
| 42 | protected const string MinimizationIterationsParameterName = "Iterations";
|
---|
| 43 | protected const string ApproximateGradientsParameterName = "ApproximateGradients";
|
---|
| 44 | protected const string SeedParameterName = "Seed";
|
---|
| 45 | protected const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
| 46 | protected const string ModelCreatorParameterName = "GaussianProcessModelCreator";
|
---|
| 47 | protected const string NegativeLogLikelihoodParameterName = "NegativeLogLikelihood";
|
---|
| 48 | protected const string HyperparameterParameterName = "Hyperparameter";
|
---|
| 49 | protected const string HyperparameterGradientsParameterName = "HyperparameterGradients";
|
---|
| 50 | protected const string SolutionCreatorParameterName = "GaussianProcessSolutionCreator";
|
---|
[13118] | 51 | protected const string ScaleInputValuesParameterName = "ScaleInputValues";
|
---|
[9096] | 52 |
|
---|
| 53 | public new IDataAnalysisProblem Problem {
|
---|
| 54 | get { return (IDataAnalysisProblem)base.Problem; }
|
---|
| 55 | set { base.Problem = value; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | #region parameter properties
|
---|
| 59 | public IValueParameter<IMeanFunction> MeanFunctionParameter {
|
---|
| 60 | get { return (IValueParameter<IMeanFunction>)Parameters[MeanFunctionParameterName]; }
|
---|
| 61 | }
|
---|
| 62 | public IValueParameter<ICovarianceFunction> CovarianceFunctionParameter {
|
---|
| 63 | get { return (IValueParameter<ICovarianceFunction>)Parameters[CovarianceFunctionParameterName]; }
|
---|
| 64 | }
|
---|
| 65 | public IValueParameter<IntValue> MinimizationIterationsParameter {
|
---|
| 66 | get { return (IValueParameter<IntValue>)Parameters[MinimizationIterationsParameterName]; }
|
---|
| 67 | }
|
---|
| 68 | public IValueParameter<IntValue> SeedParameter {
|
---|
| 69 | get { return (IValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
| 70 | }
|
---|
| 71 | public IValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
| 72 | get { return (IValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
| 73 | }
|
---|
[13118] | 74 | public IFixedValueParameter<BoolValue> ScaleInputValuesParameter {
|
---|
| 75 | get { return (IFixedValueParameter<BoolValue>)Parameters[ScaleInputValuesParameterName]; }
|
---|
| 76 | }
|
---|
[9096] | 77 | #endregion
|
---|
| 78 | #region properties
|
---|
| 79 | public IMeanFunction MeanFunction {
|
---|
| 80 | set { MeanFunctionParameter.Value = value; }
|
---|
| 81 | get { return MeanFunctionParameter.Value; }
|
---|
| 82 | }
|
---|
| 83 | public ICovarianceFunction CovarianceFunction {
|
---|
| 84 | set { CovarianceFunctionParameter.Value = value; }
|
---|
| 85 | get { return CovarianceFunctionParameter.Value; }
|
---|
| 86 | }
|
---|
| 87 | public int MinimizationIterations {
|
---|
| 88 | set { MinimizationIterationsParameter.Value.Value = value; }
|
---|
| 89 | get { return MinimizationIterationsParameter.Value.Value; }
|
---|
| 90 | }
|
---|
| 91 | public int Seed { get { return SeedParameter.Value.Value; } set { SeedParameter.Value.Value = value; } }
|
---|
| 92 | public bool SetSeedRandomly { get { return SetSeedRandomlyParameter.Value.Value; } set { SetSeedRandomlyParameter.Value.Value = value; } }
|
---|
[13118] | 93 |
|
---|
| 94 | public bool ScaleInputValues {
|
---|
| 95 | get { return ScaleInputValuesParameter.Value.Value; }
|
---|
| 96 | set { ScaleInputValuesParameter.Value.Value = value; }
|
---|
| 97 | }
|
---|
[9096] | 98 | #endregion
|
---|
| 99 |
|
---|
| 100 | [StorableConstructor]
|
---|
[16565] | 101 | protected GaussianProcessBase(StorableConstructorFlag _) : base(_) { }
|
---|
[9096] | 102 | protected GaussianProcessBase(GaussianProcessBase original, Cloner cloner)
|
---|
| 103 | : base(original, cloner) {
|
---|
| 104 | }
|
---|
| 105 | protected GaussianProcessBase(IDataAnalysisProblem problem)
|
---|
| 106 | : base() {
|
---|
| 107 | Problem = problem;
|
---|
| 108 | Parameters.Add(new ValueParameter<IMeanFunction>(MeanFunctionParameterName, "The mean function to use.", new MeanConst()));
|
---|
| 109 | Parameters.Add(new ValueParameter<ICovarianceFunction>(CovarianceFunctionParameterName, "The covariance function to use.", new CovarianceSquaredExponentialIso()));
|
---|
| 110 | Parameters.Add(new ValueParameter<IntValue>(MinimizationIterationsParameterName, "The number of iterations for likelihood optimization with LM-BFGS.", new IntValue(20)));
|
---|
| 111 | Parameters.Add(new ValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
| 112 | Parameters.Add(new ValueParameter<BoolValue>(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
| 113 |
|
---|
| 114 | Parameters.Add(new ValueParameter<BoolValue>(ApproximateGradientsParameterName, "Indicates that gradients should not be approximated (necessary for LM-BFGS).", new BoolValue(false)));
|
---|
| 115 | Parameters[ApproximateGradientsParameterName].Hidden = true; // should not be changed
|
---|
| 116 |
|
---|
[13118] | 117 | Parameters.Add(new FixedValueParameter<BoolValue>(ScaleInputValuesParameterName,
|
---|
| 118 | "Determines if the input variable values are scaled to the range [0..1] for training.", new BoolValue(true)));
|
---|
| 119 | Parameters[ScaleInputValuesParameterName].Hidden = true;
|
---|
| 120 |
|
---|
[12797] | 121 | // necessary for BFGS
|
---|
[14434] | 122 | Parameters.Add(new FixedValueParameter<BoolValue>("Maximization (BFGS)", new BoolValue(false)));
|
---|
| 123 | Parameters["Maximization (BFGS)"].Hidden = true;
|
---|
[12797] | 124 |
|
---|
[9096] | 125 | var randomCreator = new HeuristicLab.Random.RandomCreator();
|
---|
| 126 | var gpInitializer = new GaussianProcessHyperparameterInitializer();
|
---|
| 127 | var bfgsInitializer = new LbfgsInitializer();
|
---|
| 128 | var makeStep = new LbfgsMakeStep();
|
---|
| 129 | var branch = new ConditionalBranch();
|
---|
| 130 | var modelCreator = new Placeholder();
|
---|
| 131 | var updateResults = new LbfgsUpdateResults();
|
---|
| 132 | var analyzer = new LbfgsAnalyzer();
|
---|
| 133 | var finalModelCreator = new Placeholder();
|
---|
| 134 | var finalAnalyzer = new LbfgsAnalyzer();
|
---|
| 135 | var solutionCreator = new Placeholder();
|
---|
| 136 |
|
---|
| 137 | OperatorGraph.InitialOperator = randomCreator;
|
---|
| 138 | randomCreator.SeedParameter.ActualName = SeedParameterName;
|
---|
| 139 | randomCreator.SeedParameter.Value = null;
|
---|
| 140 | randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameterName;
|
---|
| 141 | randomCreator.SetSeedRandomlyParameter.Value = null;
|
---|
| 142 | randomCreator.Successor = gpInitializer;
|
---|
| 143 |
|
---|
| 144 | gpInitializer.CovarianceFunctionParameter.ActualName = CovarianceFunctionParameterName;
|
---|
| 145 | gpInitializer.MeanFunctionParameter.ActualName = MeanFunctionParameterName;
|
---|
| 146 | gpInitializer.ProblemDataParameter.ActualName = Problem.ProblemDataParameter.Name;
|
---|
| 147 | gpInitializer.HyperparameterParameter.ActualName = HyperparameterParameterName;
|
---|
| 148 | gpInitializer.RandomParameter.ActualName = randomCreator.RandomParameter.Name;
|
---|
| 149 | gpInitializer.Successor = bfgsInitializer;
|
---|
| 150 |
|
---|
| 151 | bfgsInitializer.IterationsParameter.ActualName = MinimizationIterationsParameterName;
|
---|
| 152 | bfgsInitializer.PointParameter.ActualName = HyperparameterParameterName;
|
---|
| 153 | bfgsInitializer.ApproximateGradientsParameter.ActualName = ApproximateGradientsParameterName;
|
---|
| 154 | bfgsInitializer.Successor = makeStep;
|
---|
| 155 |
|
---|
| 156 | makeStep.StateParameter.ActualName = bfgsInitializer.StateParameter.Name;
|
---|
| 157 | makeStep.PointParameter.ActualName = HyperparameterParameterName;
|
---|
| 158 | makeStep.Successor = branch;
|
---|
| 159 |
|
---|
| 160 | branch.ConditionParameter.ActualName = makeStep.TerminationCriterionParameter.Name;
|
---|
| 161 | branch.FalseBranch = modelCreator;
|
---|
| 162 | branch.TrueBranch = finalModelCreator;
|
---|
| 163 |
|
---|
| 164 | modelCreator.OperatorParameter.ActualName = ModelCreatorParameterName;
|
---|
| 165 | modelCreator.Successor = updateResults;
|
---|
| 166 |
|
---|
[14434] | 167 | updateResults.MaximizationParameter.ActualName = "Maximization (BFGS)";
|
---|
[9096] | 168 | updateResults.StateParameter.ActualName = bfgsInitializer.StateParameter.Name;
|
---|
| 169 | updateResults.QualityParameter.ActualName = NegativeLogLikelihoodParameterName;
|
---|
| 170 | updateResults.QualityGradientsParameter.ActualName = HyperparameterGradientsParameterName;
|
---|
| 171 | updateResults.ApproximateGradientsParameter.ActualName = ApproximateGradientsParameterName;
|
---|
| 172 | updateResults.Successor = analyzer;
|
---|
| 173 |
|
---|
| 174 | analyzer.QualityParameter.ActualName = NegativeLogLikelihoodParameterName;
|
---|
| 175 | analyzer.PointParameter.ActualName = HyperparameterParameterName;
|
---|
| 176 | analyzer.QualityGradientsParameter.ActualName = HyperparameterGradientsParameterName;
|
---|
| 177 | analyzer.StateParameter.ActualName = bfgsInitializer.StateParameter.Name;
|
---|
| 178 | analyzer.PointsTableParameter.ActualName = "Hyperparameter table";
|
---|
| 179 | analyzer.QualityGradientsTableParameter.ActualName = "Gradients table";
|
---|
| 180 | analyzer.QualitiesTableParameter.ActualName = "Negative log likelihood table";
|
---|
| 181 | analyzer.Successor = makeStep;
|
---|
| 182 |
|
---|
| 183 | finalModelCreator.OperatorParameter.ActualName = ModelCreatorParameterName;
|
---|
| 184 | finalModelCreator.Successor = finalAnalyzer;
|
---|
| 185 |
|
---|
| 186 | finalAnalyzer.QualityParameter.ActualName = NegativeLogLikelihoodParameterName;
|
---|
| 187 | finalAnalyzer.PointParameter.ActualName = HyperparameterParameterName;
|
---|
| 188 | finalAnalyzer.QualityGradientsParameter.ActualName = HyperparameterGradientsParameterName;
|
---|
| 189 | finalAnalyzer.PointsTableParameter.ActualName = analyzer.PointsTableParameter.ActualName;
|
---|
| 190 | finalAnalyzer.QualityGradientsTableParameter.ActualName = analyzer.QualityGradientsTableParameter.ActualName;
|
---|
| 191 | finalAnalyzer.QualitiesTableParameter.ActualName = analyzer.QualitiesTableParameter.ActualName;
|
---|
| 192 | finalAnalyzer.Successor = solutionCreator;
|
---|
| 193 |
|
---|
| 194 | solutionCreator.OperatorParameter.ActualName = SolutionCreatorParameterName;
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 198 | private void AfterDeserialization() {
|
---|
[12797] | 199 | // BackwardsCompatibility3.4
|
---|
| 200 | #region Backwards compatible code, remove with 3.5
|
---|
[14434] | 201 | if (Parameters.ContainsKey("Maximization")) {
|
---|
| 202 | Parameters.Remove("Maximization");
|
---|
[12797] | 203 | }
|
---|
[13118] | 204 |
|
---|
[14434] | 205 | if (!Parameters.ContainsKey("Maximization (BFGS)")) {
|
---|
| 206 | Parameters.Add(new FixedValueParameter<BoolValue>("Maximization (BFGS)", new BoolValue(false)));
|
---|
| 207 | Parameters["Maximization (BFGS)"].Hidden = true;
|
---|
| 208 | OperatorGraph.Operators.OfType<LbfgsUpdateResults>().First().MaximizationParameter.ActualName = "Maximization BFGS";
|
---|
| 209 | }
|
---|
| 210 |
|
---|
[13118] | 211 | if (!Parameters.ContainsKey(ScaleInputValuesParameterName)) {
|
---|
| 212 | Parameters.Add(new FixedValueParameter<BoolValue>(ScaleInputValuesParameterName,
|
---|
| 213 | "Determines if the input variable values are scaled to the range [0..1] for training.", new BoolValue(true)));
|
---|
| 214 | Parameters[ScaleInputValuesParameterName].Hidden = true;
|
---|
| 215 | }
|
---|
[12797] | 216 | #endregion
|
---|
[9096] | 217 | }
|
---|
| 218 | }
|
---|
| 219 | }
|
---|