[9359] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9359] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
[16565] | 28 | using HEAL.Attic;
|
---|
[9359] | 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[16565] | 31 | [StorableType("F60E0A63-0107-44E3-920B-BB5B09E9DDDF")]
|
---|
[9359] | 32 | [Item(Name = "CovarianceNeuralNetwork",
|
---|
| 33 | Description = "Neural network covariance function for Gaussian processes.")]
|
---|
| 34 | public sealed class CovarianceNeuralNetwork : ParameterizedNamedItem, ICovarianceFunction {
|
---|
| 35 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
| 36 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
| 37 | }
|
---|
| 38 |
|
---|
[9360] | 39 | public IValueParameter<DoubleValue> LengthParameter {
|
---|
| 40 | get { return (IValueParameter<DoubleValue>)Parameters["Length"]; }
|
---|
[9359] | 41 | }
|
---|
[10489] | 42 | private bool HasFixedScaleParameter {
|
---|
| 43 | get { return ScaleParameter.Value != null; }
|
---|
| 44 | }
|
---|
| 45 | private bool HasFixedLengthParameter {
|
---|
| 46 | get { return LengthParameter.Value != null; }
|
---|
| 47 | }
|
---|
[9359] | 48 |
|
---|
| 49 | [StorableConstructor]
|
---|
[16565] | 50 | private CovarianceNeuralNetwork(StorableConstructorFlag _) : base(_) {
|
---|
[9359] | 51 | }
|
---|
| 52 |
|
---|
| 53 | private CovarianceNeuralNetwork(CovarianceNeuralNetwork original, Cloner cloner)
|
---|
| 54 | : base(original, cloner) {
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | public CovarianceNeuralNetwork()
|
---|
| 58 | : base() {
|
---|
| 59 | Name = ItemName;
|
---|
| 60 | Description = ItemDescription;
|
---|
| 61 |
|
---|
| 62 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter."));
|
---|
[9360] | 63 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Length", "The length parameter."));
|
---|
[9359] | 64 | }
|
---|
| 65 |
|
---|
| 66 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 67 | return new CovarianceNeuralNetwork(this, cloner);
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 71 | return
|
---|
[10489] | 72 | (HasFixedScaleParameter ? 0 : 1) +
|
---|
| 73 | (HasFixedLengthParameter ? 0 : 1);
|
---|
[9359] | 74 | }
|
---|
| 75 |
|
---|
| 76 | public void SetParameter(double[] p) {
|
---|
[9360] | 77 | double scale, length;
|
---|
| 78 | GetParameterValues(p, out scale, out length);
|
---|
[9359] | 79 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
[9360] | 80 | LengthParameter.Value = new DoubleValue(length);
|
---|
[9359] | 81 | }
|
---|
| 82 |
|
---|
| 83 |
|
---|
[9360] | 84 | private void GetParameterValues(double[] p, out double scale, out double length) {
|
---|
[9359] | 85 | // gather parameter values
|
---|
| 86 | int c = 0;
|
---|
[10489] | 87 | if (HasFixedLengthParameter) {
|
---|
[9360] | 88 | length = LengthParameter.Value.Value;
|
---|
[9359] | 89 | } else {
|
---|
[9360] | 90 | length = Math.Exp(2 * p[c]);
|
---|
[9359] | 91 | c++;
|
---|
| 92 | }
|
---|
| 93 |
|
---|
[10489] | 94 | if (HasFixedScaleParameter) {
|
---|
[9359] | 95 | scale = ScaleParameter.Value.Value;
|
---|
| 96 | } else {
|
---|
| 97 | scale = Math.Exp(2 * p[c]);
|
---|
| 98 | c++;
|
---|
| 99 | }
|
---|
| 100 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceNeuralNetwork", "p");
|
---|
| 101 | }
|
---|
| 102 |
|
---|
[13721] | 103 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
[9360] | 104 | double length, scale;
|
---|
| 105 | GetParameterValues(p, out scale, out length);
|
---|
[10489] | 106 | var fixedLength = HasFixedLengthParameter;
|
---|
| 107 | var fixedScale = HasFixedScaleParameter;
|
---|
[9359] | 108 |
|
---|
| 109 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 110 | cov.Covariance = (x, i, j) => {
|
---|
[10489] | 111 | double sx = 1.0;
|
---|
| 112 | double s1 = 1.0;
|
---|
| 113 | double s2 = 1.0;
|
---|
[13721] | 114 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
| 115 | var col = columnIndices[c];
|
---|
[10489] | 116 | sx += x[i, col] * x[j, col];
|
---|
| 117 | s1 += x[i, col] * x[i, col];
|
---|
| 118 | s2 += x[j, col] * x[j, col];
|
---|
[9359] | 119 | }
|
---|
[10489] | 120 |
|
---|
| 121 | return (scale * Math.Asin(sx / (Math.Sqrt((length + s1) * (length + s2)))));
|
---|
[9359] | 122 | };
|
---|
| 123 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
[10489] | 124 | double sx = 1.0;
|
---|
| 125 | double s1 = 1.0;
|
---|
| 126 | double s2 = 1.0;
|
---|
[13721] | 127 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
| 128 | var col = columnIndices[c];
|
---|
[10489] | 129 | sx += x[i, col] * xt[j, col];
|
---|
| 130 | s1 += x[i, col] * x[i, col];
|
---|
| 131 | s2 += xt[j, col] * xt[j, col];
|
---|
[9359] | 132 | }
|
---|
[10489] | 133 |
|
---|
| 134 | return (scale * Math.Asin(sx / (Math.Sqrt((length + s1) * (length + s2)))));
|
---|
[9359] | 135 | };
|
---|
[10489] | 136 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, length, scale, columnIndices, fixedLength, fixedScale);
|
---|
| 137 | return cov;
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | // order of returned gradients must match the order in GetParameterValues!
|
---|
[13784] | 141 | private static IList<double> GetGradient(double[,] x, int i, int j, double length, double scale, int[] columnIndices,
|
---|
[10489] | 142 | bool fixedLength, bool fixedScale) {
|
---|
[13784] | 143 | double sx = 1.0;
|
---|
| 144 | double s1 = 1.0;
|
---|
| 145 | double s2 = 1.0;
|
---|
| 146 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
| 147 | var col = columnIndices[c];
|
---|
| 148 | sx += x[i, col] * x[j, col];
|
---|
| 149 | s1 += x[i, col] * x[i, col];
|
---|
| 150 | s2 += x[j, col] * x[j, col];
|
---|
[10490] | 151 | }
|
---|
[13784] | 152 | var h = (length + s1) * (length + s2);
|
---|
| 153 | var f = sx / Math.Sqrt(h);
|
---|
| 154 |
|
---|
| 155 | var g = new List<double>(2);
|
---|
| 156 | if (!fixedLength) g.Add(-scale / Math.Sqrt(1.0 - f * f) * ((length * sx * (2.0 * length + s1 + s2)) / Math.Pow(h, 3.0 / 2.0)));
|
---|
| 157 | if (!fixedScale) g.Add(2.0 * scale * Math.Asin(f));
|
---|
| 158 | return g;
|
---|
[9359] | 159 | }
|
---|
| 160 | }
|
---|
| 161 | }
|
---|