1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
28 | /// <summary>
|
---|
29 | /// Helper class for incremental split calculation.
|
---|
30 | /// Used while moving a potential splitter along the ordered training instances
|
---|
31 | /// </summary>
|
---|
32 | internal class UnivariateOnlineLR {
|
---|
33 | #region state
|
---|
34 | private readonly NeumaierSum targetMean;
|
---|
35 | private readonly NeumaierSum attributeMean;
|
---|
36 | private readonly NeumaierSum targetVarSum;
|
---|
37 | private readonly NeumaierSum attributeVarSum;
|
---|
38 | private readonly NeumaierSum comoment;
|
---|
39 | private readonly NeumaierSum ssr;
|
---|
40 | private int size;
|
---|
41 | #endregion
|
---|
42 |
|
---|
43 | public double Ssr {
|
---|
44 | get { return ssr.Get(); }
|
---|
45 | }
|
---|
46 | public int Size {
|
---|
47 | get { return size; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | private double Beta {
|
---|
51 | get { return comoment.Get() / attributeVarSum.Get(); }
|
---|
52 | }
|
---|
53 | private double Alpha {
|
---|
54 | get { return targetMean.Get() - Beta * attributeMean.Get(); }
|
---|
55 | }
|
---|
56 |
|
---|
57 | public UnivariateOnlineLR(ICollection<double> attributeValues, ICollection<double> targetValues) {
|
---|
58 | if (attributeValues.Count != targetValues.Count) throw new ArgumentException("Targets and Attributes need to have the same length");
|
---|
59 | size = attributeValues.Count;
|
---|
60 |
|
---|
61 | var yMean = targetValues.Average();
|
---|
62 | var xMean = attributeValues.Average();
|
---|
63 | targetMean = new NeumaierSum(yMean);
|
---|
64 | attributeMean = new NeumaierSum(xMean);
|
---|
65 | targetVarSum = new NeumaierSum(targetValues.VariancePop() * size);
|
---|
66 | attributeVarSum = new NeumaierSum(attributeValues.VariancePop() * size);
|
---|
67 | comoment = new NeumaierSum(attributeValues.Zip(targetValues, (x, y) => (x - xMean) * (y - yMean)).Sum());
|
---|
68 |
|
---|
69 | var beta = comoment.Get() / attributeVarSum.Get();
|
---|
70 | var alpha = yMean - beta * xMean;
|
---|
71 | ssr = new NeumaierSum(attributeValues.Zip(targetValues, (x, y) => y - alpha - beta * x).Sum(x => x * x));
|
---|
72 | }
|
---|
73 |
|
---|
74 | public void Add(double attributeValue, double targetValue) {
|
---|
75 | var predictOld = Predict(attributeValue, targetValue);
|
---|
76 |
|
---|
77 | size++;
|
---|
78 | var dx = attributeValue - attributeMean.Get();
|
---|
79 | var dy = targetValue - targetMean.Get();
|
---|
80 | attributeMean.Add(dx / size);
|
---|
81 | targetMean.Add(dy / size);
|
---|
82 | var dx2 = attributeValue - attributeMean.Get();
|
---|
83 | var dy2 = targetValue - targetMean.Get();
|
---|
84 | attributeVarSum.Add(dx * dx2);
|
---|
85 | targetVarSum.Add(dy * dy2);
|
---|
86 | comoment.Add(dx * dy2);
|
---|
87 |
|
---|
88 | ssr.Add(predictOld * Predict(attributeValue, targetValue));
|
---|
89 | }
|
---|
90 |
|
---|
91 | public void Remove(double attributeValue, double targetValue) {
|
---|
92 | var predictOld = Predict(attributeValue, targetValue);
|
---|
93 |
|
---|
94 | var dx2 = attributeValue - attributeMean.Get();
|
---|
95 | var dy2 = targetValue - targetMean.Get();
|
---|
96 | attributeMean.Mul(size / (size - 1.0));
|
---|
97 | targetMean.Mul(size / (size - 1.0));
|
---|
98 | attributeMean.Add(-attributeValue / (size - 1.0));
|
---|
99 | targetMean.Add(-targetValue / (size - 1.0));
|
---|
100 | var dx = attributeValue - attributeMean.Get();
|
---|
101 | var dy = targetValue - targetMean.Get();
|
---|
102 | attributeVarSum.Add(-dx * dx2);
|
---|
103 | targetVarSum.Add(-dy * dy2);
|
---|
104 | comoment.Add(-dx * dy2);
|
---|
105 | size--;
|
---|
106 |
|
---|
107 | ssr.Add(-predictOld * Predict(attributeValue, targetValue));
|
---|
108 | }
|
---|
109 |
|
---|
110 | private double Predict(double attributeValue, double targetValue) {
|
---|
111 | return targetValue - Alpha - Beta * attributeValue;
|
---|
112 | }
|
---|
113 | }
|
---|
114 | } |
---|