1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 | using HEAL.Attic;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
33 | [StorableType("FAF1F955-82F3-4824-9759-9D2846E831AE")]
|
---|
34 | public class RegressionNodeTreeModel : RegressionModel, IDecisionTreeModel {
|
---|
35 | public const string NumCurrentLeafsResultName = "Number of current leafs";
|
---|
36 | public const string RootVariableName = "Root";
|
---|
37 | #region Properties
|
---|
38 | [Storable]
|
---|
39 | internal RegressionNodeModel Root { get; private set; }
|
---|
40 | #endregion
|
---|
41 |
|
---|
42 | #region HLConstructors & Cloning
|
---|
43 | [StorableConstructor]
|
---|
44 | protected RegressionNodeTreeModel(StorableConstructorFlag _) : base(_) { }
|
---|
45 | protected RegressionNodeTreeModel(RegressionNodeTreeModel original, Cloner cloner) : base(original, cloner) {
|
---|
46 | Root = cloner.Clone(original.Root);
|
---|
47 | }
|
---|
48 | protected RegressionNodeTreeModel(string targetVariable) : base(targetVariable) { }
|
---|
49 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
50 | return new RegressionNodeTreeModel(this, cloner);
|
---|
51 | }
|
---|
52 | #endregion
|
---|
53 |
|
---|
54 | internal static RegressionNodeTreeModel CreateTreeModel(string targetAttr, RegressionTreeParameters regressionTreeParams) {
|
---|
55 | return regressionTreeParams.LeafModel.ProvidesConfidence ? new ConfidenceRegressionNodeTreeModel(targetAttr) : new RegressionNodeTreeModel(targetAttr);
|
---|
56 | }
|
---|
57 |
|
---|
58 | #region RegressionModel
|
---|
59 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
60 | get { return Root.VariablesUsedForPrediction ?? new List<string>(); }
|
---|
61 | }
|
---|
62 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
63 | if (Root == null) throw new NotSupportedException("The model has not been built yet");
|
---|
64 | return Root.GetEstimatedValues(dataset, rows);
|
---|
65 | }
|
---|
66 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
67 | return new RegressionSolution(this, problemData);
|
---|
68 | }
|
---|
69 | #endregion
|
---|
70 |
|
---|
71 | #region IDecisionTreeModel
|
---|
72 | public void Build(IReadOnlyList<int> trainingRows, IReadOnlyList<int> pruningRows, IScope statescope, ResultCollection results, CancellationToken cancellationToken) {
|
---|
73 | var regressionTreeParams = (RegressionTreeParameters)statescope.Variables[DecisionTreeRegression.RegressionTreeParameterVariableName].Value;
|
---|
74 | //start with one node
|
---|
75 | if (Root == null)
|
---|
76 | Root = RegressionNodeModel.CreateNode(regressionTreeParams.TargetVariable, regressionTreeParams);
|
---|
77 |
|
---|
78 | //split into (overfitted tree)
|
---|
79 | regressionTreeParams.Splitter.Split(this, trainingRows, statescope, cancellationToken);
|
---|
80 |
|
---|
81 | //prune
|
---|
82 | regressionTreeParams.Pruning.Prune(this, trainingRows, pruningRows, statescope, cancellationToken);
|
---|
83 |
|
---|
84 | //build final leaf models
|
---|
85 | regressionTreeParams.LeafModel.Build(this, trainingRows.Union(pruningRows).ToArray(), statescope, cancellationToken);
|
---|
86 | }
|
---|
87 |
|
---|
88 | public void Update(IReadOnlyList<int> rows, IScope statescope, CancellationToken cancellationToken) {
|
---|
89 | var regressionTreeParams = (RegressionTreeParameters)statescope.Variables[DecisionTreeRegression.RegressionTreeParameterVariableName].Value;
|
---|
90 | regressionTreeParams.LeafModel.Build(this, rows, statescope, cancellationToken);
|
---|
91 | }
|
---|
92 |
|
---|
93 | public static void Initialize(IScope stateScope) {
|
---|
94 | var param = (RegressionTreeParameters)stateScope.Variables[DecisionTreeRegression.RegressionTreeParameterVariableName].Value;
|
---|
95 | stateScope.Variables.Add(new Variable(RootVariableName, RegressionNodeModel.CreateNode(param.TargetVariable, param)));
|
---|
96 | }
|
---|
97 | #endregion
|
---|
98 |
|
---|
99 | public void BuildModel(IReadOnlyList<int> trainingRows, IReadOnlyList<int> pruningRows, IScope statescope, ResultCollection results, CancellationToken cancellationToken) {
|
---|
100 | var regressionTreeParams = (RegressionTreeParameters)statescope.Variables[DecisionTreeRegression.RegressionTreeParameterVariableName].Value;
|
---|
101 | //start with one node
|
---|
102 | Root = RegressionNodeModel.CreateNode(regressionTreeParams.TargetVariable, regressionTreeParams);
|
---|
103 |
|
---|
104 | //split into (overfitted tree)
|
---|
105 | regressionTreeParams.Splitter.Split(this, trainingRows, statescope, cancellationToken);
|
---|
106 |
|
---|
107 | //prune
|
---|
108 | regressionTreeParams.Pruning.Prune(this, trainingRows, pruningRows, statescope, cancellationToken);
|
---|
109 | }
|
---|
110 |
|
---|
111 | [StorableType("E84ACC40-5694-4E40-A947-190673643206")]
|
---|
112 | private sealed class ConfidenceRegressionNodeTreeModel : RegressionNodeTreeModel, IConfidenceRegressionModel {
|
---|
113 | #region HLConstructors & Cloning
|
---|
114 | [StorableConstructor]
|
---|
115 | private ConfidenceRegressionNodeTreeModel(StorableConstructorFlag _) : base(_) { }
|
---|
116 | private ConfidenceRegressionNodeTreeModel(ConfidenceRegressionNodeTreeModel original, Cloner cloner) : base(original, cloner) { }
|
---|
117 | public ConfidenceRegressionNodeTreeModel(string targetVariable) : base(targetVariable) { }
|
---|
118 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
119 | return new ConfidenceRegressionNodeTreeModel(this, cloner);
|
---|
120 | }
|
---|
121 | #endregion
|
---|
122 |
|
---|
123 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
124 | if (Root == null) throw new NotSupportedException("The model has not been built yet");
|
---|
125 | return ((IConfidenceRegressionModel)Root).GetEstimatedVariances(dataset, rows);
|
---|
126 | }
|
---|
127 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
128 | return new ConfidenceRegressionSolution(this, problemData);
|
---|
129 | }
|
---|
130 | }
|
---|
131 | }
|
---|
132 | } |
---|