[9129] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9129] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 25 | using HeuristicLab.Operators;
|
---|
| 26 | using HeuristicLab.Parameters;
|
---|
[16565] | 27 | using HEAL.Attic;
|
---|
[9129] | 28 | using System;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
|
---|
| 31 | [Item("CMARecombinator", "Base class that calculates the weighted mean of a number of offspring.")]
|
---|
[16565] | 32 | [StorableType("C0798B4D-1685-4720-828A-17E40879000B")]
|
---|
[9129] | 33 | public abstract class CMARecombinator : SingleSuccessorOperator, ICMARecombinator {
|
---|
| 34 |
|
---|
| 35 | public Type CMAType {
|
---|
| 36 | get { return typeof(CMAParameters); }
|
---|
| 37 | }
|
---|
| 38 |
|
---|
| 39 | #region Parameter Properties
|
---|
| 40 | public IScopeTreeLookupParameter<RealVector> OffspringParameter {
|
---|
| 41 | get { return (IScopeTreeLookupParameter<RealVector>)Parameters["Offspring"]; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public ILookupParameter<RealVector> MeanParameter {
|
---|
| 45 | get { return (ILookupParameter<RealVector>)Parameters["Mean"]; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public ILookupParameter<RealVector> OldMeanParameter {
|
---|
| 49 | get { return (ILookupParameter<RealVector>)Parameters["OldMean"]; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | public ILookupParameter<CMAParameters> StrategyParametersParameter {
|
---|
| 53 | get { return (ILookupParameter<CMAParameters>)Parameters["StrategyParameters"]; }
|
---|
| 54 | }
|
---|
| 55 | #endregion
|
---|
| 56 |
|
---|
| 57 | [StorableConstructor]
|
---|
[16565] | 58 | protected CMARecombinator(StorableConstructorFlag _) : base(_) { }
|
---|
[9129] | 59 | protected CMARecombinator(CMARecombinator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 60 | protected CMARecombinator()
|
---|
| 61 | : base() {
|
---|
| 62 | Parameters.Add(new ScopeTreeLookupParameter<RealVector>("Offspring", "The offspring that should be recombined."));
|
---|
| 63 | Parameters.Add(new LookupParameter<RealVector>("Mean", "The new mean solution."));
|
---|
| 64 | Parameters.Add(new LookupParameter<RealVector>("OldMean", "The old mean solution."));
|
---|
| 65 | Parameters.Add(new LookupParameter<CMAParameters>("StrategyParameters", "The CMA-ES strategy parameters used for mutation."));
|
---|
| 66 | OffspringParameter.ActualName = "RealVector";
|
---|
| 67 | MeanParameter.ActualName = "XMean";
|
---|
| 68 | OldMeanParameter.ActualName = "XOld";
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | public override IOperation Apply() {
|
---|
| 72 | var sp = StrategyParametersParameter.ActualValue;
|
---|
[9297] | 73 | if (sp.Weights == null) sp.Weights = GetWeights(sp.Mu);
|
---|
[9129] | 74 |
|
---|
| 75 | var offspring = OffspringParameter.ActualValue;
|
---|
| 76 | var mean = new RealVector(offspring[0].Length);
|
---|
| 77 | for (int i = 0; i < mean.Length; i++) {
|
---|
[9297] | 78 | for (int j = 0; j < sp.Mu; j++)
|
---|
[9129] | 79 | mean[i] += sp.Weights[j] * offspring[j][i];
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | var oldMean = MeanParameter.ActualValue;
|
---|
| 83 | MeanParameter.ActualValue = mean;
|
---|
| 84 | OldMeanParameter.ActualValue = oldMean;
|
---|
| 85 | return base.Apply();
|
---|
| 86 | }
|
---|
| 87 |
|
---|
[9297] | 88 | protected abstract double[] GetWeights(int mu);
|
---|
[9129] | 89 | }
|
---|
| 90 | } |
---|