[9129] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9129] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[9302] | 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
[9129] | 24 | using HeuristicLab.Analysis;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[9302] | 27 | using HeuristicLab.Data;
|
---|
[9129] | 28 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 29 | using HeuristicLab.Operators;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
[16565] | 32 | using HEAL.Attic;
|
---|
[9129] | 33 |
|
---|
| 34 | namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
|
---|
| 35 | [Item("CMAAnalyzer", "Analyzes the development of strategy parameters and visualizes the performance of CMA-ES.")]
|
---|
[16565] | 36 | [StorableType("7E36BAC4-D2A5-405D-B46F-FF91BC592D43")]
|
---|
[11970] | 37 | public sealed class CMAAnalyzer : SingleSuccessorOperator, IAnalyzer, ISingleObjectiveOperator {
|
---|
[9129] | 38 |
|
---|
| 39 | public bool EnabledByDefault {
|
---|
| 40 | get { return false; }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | #region Parameter Properties
|
---|
| 44 | public ILookupParameter<CMAParameters> StrategyParametersParameter {
|
---|
| 45 | get { return (ILookupParameter<CMAParameters>)Parameters["StrategyParameters"]; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
[9132] | 48 | public ILookupParameter<RealVector> MeanParameter {
|
---|
| 49 | get { return (ILookupParameter<RealVector>)Parameters["Mean"]; }
|
---|
[9129] | 50 | }
|
---|
| 51 |
|
---|
[9302] | 52 | public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
| 53 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
[9129] | 56 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
| 57 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
| 58 | }
|
---|
| 59 | #endregion
|
---|
| 60 |
|
---|
| 61 | [StorableConstructor]
|
---|
[16565] | 62 | private CMAAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
[9129] | 63 | private CMAAnalyzer(CMAAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 64 | public CMAAnalyzer()
|
---|
| 65 | : base() {
|
---|
| 66 | Parameters.Add(new LookupParameter<CMAParameters>("StrategyParameters", "The CMA strategy parameters to be analyzed."));
|
---|
[9132] | 67 | Parameters.Add(new LookupParameter<RealVector>("Mean", "The mean real vector that is being optimized."));
|
---|
[9302] | 68 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The qualities of the solutions."));
|
---|
[9129] | 69 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The collection to store the results in."));
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 73 | return new CMAAnalyzer(this, cloner);
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | public override IOperation Apply() {
|
---|
| 77 | var sp = StrategyParametersParameter.ActualValue;
|
---|
[9132] | 78 | var vector = MeanParameter.ActualValue;
|
---|
[9129] | 79 | var results = ResultsParameter.ActualValue;
|
---|
[9302] | 80 | var qualities = QualityParameter.ActualValue;
|
---|
| 81 | double min = qualities[0].Value, max = qualities[0].Value, avg = qualities[0].Value;
|
---|
| 82 | for (int i = 1; i < qualities.Length; i++) {
|
---|
| 83 | if (qualities[i].Value < min) min = qualities[i].Value;
|
---|
| 84 | if (qualities[i].Value > max) max = qualities[i].Value;
|
---|
| 85 | avg += qualities[i].Value;
|
---|
[9129] | 86 | }
|
---|
[9302] | 87 | avg /= qualities.Length;
|
---|
[9129] | 88 |
|
---|
[9302] | 89 | DataTable progress;
|
---|
| 90 | if (results.ContainsKey("Progress")) {
|
---|
| 91 | progress = (DataTable)results["Progress"].Value;
|
---|
[9129] | 92 | } else {
|
---|
[9302] | 93 | progress = new DataTable("Progress");
|
---|
| 94 | progress.Rows.Add(new DataRow("AxisRatio"));
|
---|
| 95 | progress.Rows.Add(new DataRow("Sigma"));
|
---|
| 96 | progress.Rows.Add(new DataRow("Min Quality"));
|
---|
| 97 | progress.Rows.Add(new DataRow("Max Quality"));
|
---|
| 98 | progress.Rows.Add(new DataRow("Avg Quality"));
|
---|
| 99 | progress.VisualProperties.YAxisLogScale = true;
|
---|
| 100 | results.Add(new Result("Progress", progress));
|
---|
[9129] | 101 | }
|
---|
[9302] | 102 | progress.Rows["AxisRatio"].Values.Add(sp.AxisRatio);
|
---|
| 103 | progress.Rows["Sigma"].Values.Add(sp.Sigma);
|
---|
| 104 | progress.Rows["Min Quality"].Values.Add(min);
|
---|
| 105 | progress.Rows["Max Quality"].Values.Add(max);
|
---|
| 106 | progress.Rows["Avg Quality"].Values.Add(avg);
|
---|
[9129] | 107 |
|
---|
| 108 | DataTable scaling;
|
---|
| 109 | if (results.ContainsKey("Scaling")) {
|
---|
| 110 | scaling = (DataTable)results["Scaling"].Value;
|
---|
| 111 | } else {
|
---|
| 112 | scaling = new DataTable("Scaling");
|
---|
[9141] | 113 | scaling.VisualProperties.YAxisLogScale = true;
|
---|
[9297] | 114 | for (int i = 0; i < sp.C.GetLength(0); i++)
|
---|
[9129] | 115 | scaling.Rows.Add(new DataRow("Axis" + i.ToString()));
|
---|
| 116 | results.Add(new Result("Scaling", scaling));
|
---|
| 117 | }
|
---|
[9297] | 118 | for (int i = 0; i < sp.C.GetLength(0); i++)
|
---|
[9129] | 119 | scaling.Rows["Axis" + i.ToString()].Values.Add(sp.D[i]);
|
---|
| 120 |
|
---|
| 121 | DataTable realVector;
|
---|
[9302] | 122 | if (results.ContainsKey("Object Variables")) {
|
---|
| 123 | realVector = (DataTable)results["Object Variables"].Value;
|
---|
[9129] | 124 | } else {
|
---|
[9302] | 125 | realVector = new DataTable("Object Variables");
|
---|
[9129] | 126 | for (int i = 0; i < vector.Length; i++)
|
---|
| 127 | realVector.Rows.Add(new DataRow("Axis" + i.ToString()));
|
---|
[9302] | 128 | results.Add(new Result("Object Variables", realVector));
|
---|
[9129] | 129 | }
|
---|
| 130 | for (int i = 0; i < vector.Length; i++)
|
---|
| 131 | realVector.Rows["Axis" + i.ToString()].Values.Add(vector[i]);
|
---|
| 132 |
|
---|
[9140] | 133 | DataTable stdDevs;
|
---|
[9302] | 134 | if (results.ContainsKey("Standard Deviations")) {
|
---|
| 135 | stdDevs = (DataTable)results["Standard Deviations"].Value;
|
---|
[9140] | 136 | } else {
|
---|
[9302] | 137 | stdDevs = new DataTable("Standard Deviations");
|
---|
[9141] | 138 | stdDevs.VisualProperties.YAxisLogScale = true;
|
---|
[9302] | 139 | stdDevs.Rows.Add(new DataRow("MinStdDev"));
|
---|
| 140 | stdDevs.Rows.Add(new DataRow("MaxStdDev"));
|
---|
[9140] | 141 | for (int i = 0; i < vector.Length; i++)
|
---|
| 142 | stdDevs.Rows.Add(new DataRow("Axis" + i.ToString()));
|
---|
[9302] | 143 | results.Add(new Result("Standard Deviations", stdDevs));
|
---|
[9140] | 144 | }
|
---|
| 145 | for (int i = 0; i < vector.Length; i++)
|
---|
[9148] | 146 | stdDevs.Rows["Axis" + i.ToString()].Values.Add(Math.Sqrt(sp.C[i, i]));
|
---|
[9302] | 147 | stdDevs.Rows["MinStdDev"].Values.Add(sp.D.Min() * sp.Sigma);
|
---|
| 148 | stdDevs.Rows["MaxStdDev"].Values.Add(sp.D.Max() * sp.Sigma);
|
---|
[9140] | 149 |
|
---|
[9129] | 150 | return base.Apply();
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 | } |
---|