1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Diagnostics;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Threading;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
31 | using HeuristicLab.Random;
|
---|
32 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
33 | using ExecutionContext = HeuristicLab.Core.ExecutionContext;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic_34.Tests {
|
---|
36 | [TestClass()]
|
---|
37 | public class SymbolicDataAnalysisExpressionCrossoverTest {
|
---|
38 | private const int PopulationSize = 10000;
|
---|
39 | private const int MaxTreeDepth = 10;
|
---|
40 | private const int MaxTreeLength = 100;
|
---|
41 | private const int Rows = 1000;
|
---|
42 | private const int Columns = 50;
|
---|
43 |
|
---|
44 | /// <summary>
|
---|
45 | ///Gets or sets the test context which provides
|
---|
46 | ///information about and functionality for the current test run.
|
---|
47 | ///</summary>
|
---|
48 | public TestContext TestContext { get; set; }
|
---|
49 |
|
---|
50 | [TestMethod]
|
---|
51 | public void SymbolicDataAnalysisExpressionSemanticSimilarityCrossoverPerformanceTest() {
|
---|
52 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
53 | var crossover = problem.OperatorsParameter.Value.OfType<SymbolicDataAnalysisExpressionSemanticSimilarityCrossover<IRegressionProblemData>>().First();
|
---|
54 | SymbolicDataAnalysisCrossoverPerformanceTest(crossover);
|
---|
55 | }
|
---|
56 |
|
---|
57 | [TestMethod]
|
---|
58 | public void SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossoverPerformanceTest() {
|
---|
59 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
60 | var crossover = problem.OperatorsParameter.Value.OfType<SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover<IRegressionProblemData>>().First();
|
---|
61 | SymbolicDataAnalysisCrossoverPerformanceTest(crossover);
|
---|
62 | }
|
---|
63 |
|
---|
64 | [TestMethod]
|
---|
65 | public void SymbolicDataAnalysisExpressionDeterministicBestCrossoverPerformanceTest() {
|
---|
66 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
67 | var crossover = problem.OperatorsParameter.Value.OfType<SymbolicDataAnalysisExpressionDeterministicBestCrossover<IRegressionProblemData>>().First();
|
---|
68 | SymbolicDataAnalysisCrossoverPerformanceTest(crossover);
|
---|
69 | }
|
---|
70 |
|
---|
71 | [TestMethod]
|
---|
72 | public void SymbolicDataAnalysisExpressionContextAwareCrossoverPerformanceTest() {
|
---|
73 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
74 | var crossover = problem.OperatorsParameter.Value.OfType<SymbolicDataAnalysisExpressionContextAwareCrossover<IRegressionProblemData>>().First();
|
---|
75 | SymbolicDataAnalysisCrossoverPerformanceTest(crossover);
|
---|
76 | }
|
---|
77 |
|
---|
78 | [TestMethod]
|
---|
79 | public void SymbolicDataAnalysisExpressionDepthConstrainedCrossoverPerformanceTest() {
|
---|
80 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
81 | var crossover = problem.OperatorsParameter.Value.OfType<SymbolicDataAnalysisExpressionDepthConstrainedCrossover<IRegressionProblemData>>().First();
|
---|
82 |
|
---|
83 | crossover.DepthRangeParameter.Value = crossover.DepthRangeParameter.ValidValues.First(s => s.Value == "HighLevel");
|
---|
84 | SymbolicDataAnalysisCrossoverPerformanceTest(crossover);
|
---|
85 | crossover.DepthRangeParameter.Value = crossover.DepthRangeParameter.ValidValues.First(s => s.Value == "Standard");
|
---|
86 | SymbolicDataAnalysisCrossoverPerformanceTest(crossover);
|
---|
87 | crossover.DepthRangeParameter.Value = crossover.DepthRangeParameter.ValidValues.First(s => s.Value == "LowLevel");
|
---|
88 | SymbolicDataAnalysisCrossoverPerformanceTest(crossover);
|
---|
89 | }
|
---|
90 |
|
---|
91 |
|
---|
92 | private static void SymbolicDataAnalysisCrossoverPerformanceTest(ISymbolicDataAnalysisExpressionCrossover<IRegressionProblemData> crossover) {
|
---|
93 | var twister = new MersenneTwister(31415);
|
---|
94 | var dataset = Util.CreateRandomDataset(twister, Rows, Columns);
|
---|
95 | var grammar = new FullFunctionalExpressionGrammar();
|
---|
96 | var stopwatch = new Stopwatch();
|
---|
97 |
|
---|
98 | grammar.MaximumFunctionArguments = 0;
|
---|
99 | grammar.MaximumFunctionDefinitions = 0;
|
---|
100 | grammar.MinimumFunctionArguments = 0;
|
---|
101 | grammar.MinimumFunctionDefinitions = 0;
|
---|
102 |
|
---|
103 | var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0);
|
---|
104 | foreach (ISymbolicExpressionTree tree in trees) {
|
---|
105 | Util.InitTree(tree, twister, new List<string>(dataset.VariableNames));
|
---|
106 | }
|
---|
107 | var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last());
|
---|
108 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
109 | problem.ProblemData = problemData;
|
---|
110 |
|
---|
111 | var globalScope = new Scope("Global Scope");
|
---|
112 | globalScope.Variables.Add(new Core.Variable("Random", twister));
|
---|
113 | var context = new ExecutionContext(null, problem, globalScope);
|
---|
114 | context = new ExecutionContext(context, crossover, globalScope);
|
---|
115 |
|
---|
116 | stopwatch.Start();
|
---|
117 | for (int i = 0; i != PopulationSize; ++i) {
|
---|
118 | var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
119 | var scopeParent0 = new Scope();
|
---|
120 | scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0));
|
---|
121 | context.Scope.SubScopes.Add(scopeParent0);
|
---|
122 |
|
---|
123 | var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone();
|
---|
124 | var scopeParent1 = new Scope();
|
---|
125 | scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1));
|
---|
126 | context.Scope.SubScopes.Add(scopeParent1);
|
---|
127 |
|
---|
128 | crossover.Execute(context, new CancellationToken());
|
---|
129 |
|
---|
130 | context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration
|
---|
131 | context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration
|
---|
132 | }
|
---|
133 | stopwatch.Stop();
|
---|
134 | double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize;
|
---|
135 | Console.WriteLine(crossover.Name + ": " + Environment.NewLine +
|
---|
136 | msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)");
|
---|
137 |
|
---|
138 | foreach (var tree in trees)
|
---|
139 | HeuristicLab.Encodings.SymbolicExpressionTreeEncoding_34.Tests.Util.IsValid(tree);
|
---|
140 | }
|
---|
141 | }
|
---|
142 | }
|
---|