[2854] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[2854] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[6891] | 22 | using HeuristicLab.Tests;
|
---|
[2854] | 23 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 24 |
|
---|
[9885] | 25 | namespace HeuristicLab.Encodings.PermutationEncoding.Tests {
|
---|
[2854] | 26 | /// <summary>
|
---|
| 27 | ///This is a test class for MaximalPreservativeCrossover and is intended
|
---|
| 28 | ///to contain all MaximalPreservativeCrossover Unit Tests
|
---|
| 29 | ///</summary>
|
---|
| 30 | [TestClass()]
|
---|
| 31 | public class MaximalPreservativeCrossoverTest {
|
---|
| 32 | /// <summary>
|
---|
| 33 | ///A test for Apply
|
---|
| 34 | ///</summary>
|
---|
[9885] | 35 | [TestMethod]
|
---|
| 36 | [TestCategory("Encodings.Permutation")]
|
---|
| 37 | [TestProperty("Time", "short")]
|
---|
[2854] | 38 | public void MaximalPreservativeCrossoverApplyTest() {
|
---|
| 39 | TestRandom random = new TestRandom();
|
---|
[3053] | 40 | Permutation parent1, parent2, expected, actual;
|
---|
[2854] | 41 | // The following test is based on an example from Larranaga, 1999. Genetic Algorithms for the Traveling Salesman Problem.
|
---|
| 42 | random.Reset();
|
---|
| 43 | random.IntNumbers = new int[] { 3, 2 };
|
---|
[3231] | 44 | parent1 = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 0, 1, 2, 3, 4, 5, 6, 7 });
|
---|
[2854] | 45 | Assert.IsTrue(parent1.Validate());
|
---|
[3231] | 46 | parent2 = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 1, 3, 5, 7, 6, 4, 2, 0 });
|
---|
[2854] | 47 | Assert.IsTrue(parent2.Validate());
|
---|
[3231] | 48 | expected = new Permutation(PermutationTypes.RelativeUndirected, new int[] { 1, 0, 2, 3, 4, 5, 7, 6 });
|
---|
[2854] | 49 | Assert.IsTrue(expected.Validate());
|
---|
| 50 | actual = MaximalPreservativeCrossover.Apply(random, parent1, parent2);
|
---|
| 51 | Assert.IsTrue(actual.Validate());
|
---|
| 52 | Assert.IsTrue(Auxiliary.PermutationIsEqualByPosition(expected, actual));
|
---|
[4068] | 53 |
|
---|
[2854] | 54 | // perform a test when the two permutations are of unequal length
|
---|
| 55 | random.Reset();
|
---|
| 56 | bool exceptionFired = false;
|
---|
| 57 | try {
|
---|
[3231] | 58 | MaximalPreservativeCrossover.Apply(random, new Permutation(PermutationTypes.RelativeUndirected, 8), new Permutation(PermutationTypes.RelativeUndirected, 6));
|
---|
[13246] | 59 | }
|
---|
| 60 | catch (System.ArgumentException) {
|
---|
[2854] | 61 | exceptionFired = true;
|
---|
| 62 | }
|
---|
| 63 | Assert.IsTrue(exceptionFired);
|
---|
| 64 | }
|
---|
| 65 | }
|
---|
| 66 | }
|
---|