1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
26 | using HeuristicLab.Random;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.ExpressionGenerator {
|
---|
29 | /// <summary>
|
---|
30 | /// Gamma distribution implemented after
|
---|
31 | /// "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang
|
---|
32 | /// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363–372.
|
---|
33 | /// </summary>
|
---|
34 | [Item("GammaDistributedRandom", "A pseudo random number generator for gamma distributed random numbers.")]
|
---|
35 | [StorableClass]
|
---|
36 | public sealed class GammaDistributedRandom : Item, IRandom {
|
---|
37 | [Storable]
|
---|
38 | private double shape;
|
---|
39 | public double Shape {
|
---|
40 | get { return shape; }
|
---|
41 | set { shape = value; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | [Storable]
|
---|
45 | private double rate;
|
---|
46 | public double Rate {
|
---|
47 | get { return rate; }
|
---|
48 | set { rate = value; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | [Storable]
|
---|
52 | private readonly IRandom random;
|
---|
53 |
|
---|
54 | public GammaDistributedRandom() {
|
---|
55 | random = new MersenneTwister();
|
---|
56 | }
|
---|
57 |
|
---|
58 | public GammaDistributedRandom(IRandom random, double shape, double rate) {
|
---|
59 | this.random = random;
|
---|
60 | this.shape = shape;
|
---|
61 | this.rate = rate;
|
---|
62 | }
|
---|
63 |
|
---|
64 | [StorableConstructor]
|
---|
65 | private GammaDistributedRandom(bool deserializing) : base(deserializing) { }
|
---|
66 |
|
---|
67 | private GammaDistributedRandom(GammaDistributedRandom original, Cloner cloner) : base(original, cloner) {
|
---|
68 | }
|
---|
69 |
|
---|
70 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
71 | return new GammaDistributedRandom(this, cloner);
|
---|
72 | }
|
---|
73 |
|
---|
74 | public void Reset() {
|
---|
75 | random.Reset();
|
---|
76 | }
|
---|
77 |
|
---|
78 | public void Reset(int seed) {
|
---|
79 | random.Reset(seed);
|
---|
80 | }
|
---|
81 |
|
---|
82 | public int Next() {
|
---|
83 | throw new NotImplementedException();
|
---|
84 | }
|
---|
85 |
|
---|
86 | public int Next(int maxVal) {
|
---|
87 | throw new NotImplementedException();
|
---|
88 | }
|
---|
89 |
|
---|
90 | public int Next(int minVal, int maxVal) {
|
---|
91 | throw new NotImplementedException();
|
---|
92 | }
|
---|
93 |
|
---|
94 | public double NextDouble() {
|
---|
95 | return NextDouble(random, shape, rate);
|
---|
96 | }
|
---|
97 |
|
---|
98 | /// <summary>
|
---|
99 | /// <para>Sample a value from a gamma distribution.</para>
|
---|
100 | /// <para>Implementation of "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang
|
---|
101 | /// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363–372.</para>
|
---|
102 | /// </summary>
|
---|
103 | /// <param name="uniformRandom">A uniformly-distributed random number generator.</param>
|
---|
104 | /// <param name="shape">The shape (k, α) of the Gamma distribution. Range: α ≥ 0.</param>
|
---|
105 | /// <param name="rate">The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.</param>
|
---|
106 | /// <returns>A sample from a Gamma distributed random variable.</returns>
|
---|
107 | public static double NextDouble(IRandom uniformRandom, double shape, double rate) {
|
---|
108 | if (double.IsPositiveInfinity(rate)) {
|
---|
109 | return shape;
|
---|
110 | }
|
---|
111 | var a = 1d;
|
---|
112 | if (shape < 1) {
|
---|
113 | a = Math.Pow(uniformRandom.NextDouble(), 1 / shape);
|
---|
114 | shape += 1;
|
---|
115 | }
|
---|
116 | var d = shape - 1d / 3d;
|
---|
117 | var c = 1 / Math.Sqrt(9 * d);
|
---|
118 |
|
---|
119 | for (;;) {
|
---|
120 | double v, x;
|
---|
121 | do {
|
---|
122 | x = NormalDistributedRandom.NextDouble(uniformRandom, 0, 1);
|
---|
123 | v = 1 + c * x;
|
---|
124 | } while (v <= 0);
|
---|
125 |
|
---|
126 | v = v * v * v;
|
---|
127 | x = x * x; // save a multiplication below
|
---|
128 | var u = uniformRandom.NextDouble();
|
---|
129 | if (u < 1 - 0.0331 * x * x || Math.Log(u) < 0.5 * x + d * (1 - v + Math.Log(v)))
|
---|
130 | return a * d * v / rate;
|
---|
131 | }
|
---|
132 | }
|
---|
133 | }
|
---|
134 | }
|
---|