[14407] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[14407] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 26 | using HeuristicLab.Random;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.ExpressionGenerator {
|
---|
| 29 | /// <summary>
|
---|
| 30 | /// Gamma distribution implemented after
|
---|
| 31 | /// "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang
|
---|
| 32 | /// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363–372.
|
---|
| 33 | /// </summary>
|
---|
| 34 | [Item("GammaDistributedRandom", "A pseudo random number generator for gamma distributed random numbers.")]
|
---|
| 35 | [StorableClass]
|
---|
| 36 | public sealed class GammaDistributedRandom : Item, IRandom {
|
---|
| 37 | [Storable]
|
---|
| 38 | private double shape;
|
---|
| 39 | public double Shape {
|
---|
| 40 | get { return shape; }
|
---|
| 41 | set { shape = value; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | [Storable]
|
---|
| 45 | private double rate;
|
---|
| 46 | public double Rate {
|
---|
| 47 | get { return rate; }
|
---|
| 48 | set { rate = value; }
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | [Storable]
|
---|
| 52 | private readonly IRandom random;
|
---|
| 53 |
|
---|
| 54 | public GammaDistributedRandom() {
|
---|
| 55 | random = new MersenneTwister();
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public GammaDistributedRandom(IRandom random, double shape, double rate) {
|
---|
| 59 | this.random = random;
|
---|
| 60 | this.shape = shape;
|
---|
| 61 | this.rate = rate;
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | [StorableConstructor]
|
---|
| 65 | private GammaDistributedRandom(bool deserializing) : base(deserializing) { }
|
---|
| 66 |
|
---|
| 67 | private GammaDistributedRandom(GammaDistributedRandom original, Cloner cloner) : base(original, cloner) {
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 71 | return new GammaDistributedRandom(this, cloner);
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | public void Reset() {
|
---|
| 75 | random.Reset();
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | public void Reset(int seed) {
|
---|
| 79 | random.Reset(seed);
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | public int Next() {
|
---|
| 83 | throw new NotImplementedException();
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | public int Next(int maxVal) {
|
---|
| 87 | throw new NotImplementedException();
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | public int Next(int minVal, int maxVal) {
|
---|
| 91 | throw new NotImplementedException();
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | public double NextDouble() {
|
---|
| 95 | return NextDouble(random, shape, rate);
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | /// <summary>
|
---|
| 99 | /// <para>Sample a value from a gamma distribution.</para>
|
---|
| 100 | /// <para>Implementation of "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang
|
---|
| 101 | /// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363–372.</para>
|
---|
| 102 | /// </summary>
|
---|
| 103 | /// <param name="uniformRandom">A uniformly-distributed random number generator.</param>
|
---|
| 104 | /// <param name="shape">The shape (k, α) of the Gamma distribution. Range: α ≥ 0.</param>
|
---|
| 105 | /// <param name="rate">The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.</param>
|
---|
| 106 | /// <returns>A sample from a Gamma distributed random variable.</returns>
|
---|
| 107 | public static double NextDouble(IRandom uniformRandom, double shape, double rate) {
|
---|
| 108 | if (double.IsPositiveInfinity(rate)) {
|
---|
| 109 | return shape;
|
---|
| 110 | }
|
---|
| 111 | var a = 1d;
|
---|
| 112 | if (shape < 1) {
|
---|
| 113 | a = Math.Pow(uniformRandom.NextDouble(), 1 / shape);
|
---|
| 114 | shape += 1;
|
---|
| 115 | }
|
---|
| 116 | var d = shape - 1d / 3d;
|
---|
| 117 | var c = 1 / Math.Sqrt(9 * d);
|
---|
| 118 |
|
---|
| 119 | for (;;) {
|
---|
| 120 | double v, x;
|
---|
| 121 | do {
|
---|
| 122 | x = NormalDistributedRandom.NextDouble(uniformRandom, 0, 1);
|
---|
| 123 | v = 1 + c * x;
|
---|
| 124 | } while (v <= 0);
|
---|
| 125 |
|
---|
| 126 | v = v * v * v;
|
---|
| 127 | x = x * x; // save a multiplication below
|
---|
| 128 | var u = uniformRandom.NextDouble();
|
---|
| 129 | if (u < 1 - 0.0331 * x * x || Math.Log(u) < 0.5 * x + d * (1 - v + Math.Log(v)))
|
---|
| 130 | return a * d * v / rate;
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
| 134 | }
|
---|