[4703] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[4703] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[8720] | 22 | using System;
|
---|
[4703] | 23 | using HeuristicLab.Analysis;
|
---|
[4722] | 24 | using HeuristicLab.Common;
|
---|
[4703] | 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
[17097] | 27 | using HEAL.Attic;
|
---|
[8720] | 28 | using HeuristicLab.PluginInfrastructure;
|
---|
[4703] | 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.TravelingSalesman {
|
---|
[8720] | 31 | // BackwardsCompatibility3.3
|
---|
| 32 | #region Backwards compatible code, remove with 3.4
|
---|
[4703] | 33 | /// <summary>
|
---|
| 34 | /// An operator for analyzing the diversity of solutions of Traveling Salesman Problems given in path representation.
|
---|
| 35 | /// </summary>
|
---|
[8720] | 36 | [Obsolete]
|
---|
| 37 | [NonDiscoverableType]
|
---|
[4703] | 38 | [Item("TSPPopulationDiversityAnalyzer", "An operator for analyzing the diversity of solutions of Traveling Salesman Problems given in path representation.")]
|
---|
[17097] | 39 | [StorableType("B68CC721-AC64-44A7-BFEA-B4F0ABE1402D")]
|
---|
[4703] | 40 | public sealed class TSPPopulationDiversityAnalyzer : PopulationDiversityAnalyzer<Permutation> {
|
---|
| 41 | [StorableConstructor]
|
---|
[17097] | 42 | private TSPPopulationDiversityAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
[4722] | 43 | private TSPPopulationDiversityAnalyzer(TSPPopulationDiversityAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
[4703] | 44 | public TSPPopulationDiversityAnalyzer() : base() { }
|
---|
| 45 |
|
---|
[4722] | 46 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 47 | return new TSPPopulationDiversityAnalyzer(this, cloner);
|
---|
| 48 | }
|
---|
| 49 |
|
---|
[4703] | 50 | protected override double[,] CalculateSimilarities(Permutation[] solutions) {
|
---|
| 51 | int count = solutions.Length;
|
---|
| 52 | double[,] similarities = new double[count, count];
|
---|
| 53 | int[][] edges = new int[count][];
|
---|
| 54 |
|
---|
| 55 | for (int i = 0; i < count; i++)
|
---|
| 56 | edges[i] = CalculateEdgesVector(solutions[i]);
|
---|
| 57 |
|
---|
| 58 | for (int i = 0; i < count; i++) {
|
---|
| 59 | similarities[i, i] = 1;
|
---|
| 60 | for (int j = i + 1; j < count; j++) {
|
---|
| 61 | similarities[i, j] = CalculateSimilarity(edges[i], edges[j]);
|
---|
| 62 | similarities[j, i] = similarities[i, j];
|
---|
| 63 | }
|
---|
| 64 | }
|
---|
| 65 | return similarities;
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | private int[] CalculateEdgesVector(Permutation permutation) {
|
---|
| 69 | // transform path representation into adjacency representation
|
---|
| 70 | int[] edgesVector = new int[permutation.Length];
|
---|
| 71 | for (int i = 0; i < permutation.Length - 1; i++)
|
---|
| 72 | edgesVector[permutation[i]] = permutation[i + 1];
|
---|
| 73 | edgesVector[permutation[permutation.Length - 1]] = permutation[0];
|
---|
| 74 | return edgesVector;
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | private double CalculateSimilarity(int[] edgesA, int[] edgesB) {
|
---|
| 78 | // calculate relative number of identical edges
|
---|
| 79 | int identicalEdges = 0;
|
---|
| 80 | for (int i = 0; i < edgesA.Length; i++) {
|
---|
| 81 | if ((edgesA[i] == edgesB[i]) || (edgesA[edgesB[i]] == i))
|
---|
| 82 | identicalEdges++;
|
---|
| 83 | }
|
---|
| 84 | return ((double)identicalEdges) / edgesA.Length;
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
[8720] | 87 | #endregion
|
---|
[4703] | 88 | }
|
---|