Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Problems.QuadraticAssignment/3.3/LocalImprovement/QAPStochasticScrambleLocalImprovement.cs @ 10513

Last change on this file since 10513 was 9456, checked in by swagner, 12 years ago

Updated copyright year and added some missing license headers (#1889)

File size: 7.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Threading;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.PermutationEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32
33namespace HeuristicLab.Problems.QuadraticAssignment {
34  [Item("QAPStochasticScrambleLocalImprovement", "Takes a solution and finds the local optimum with respect to the scramble neighborhood by decending along the steepest gradient.")]
35  [StorableClass]
36  public class QAPStochasticScrambleLocalImprovement : SingleSuccessorOperator, ILocalImprovementOperator, IStochasticOperator {
37
38    public Type ProblemType {
39      get { return typeof(QuadraticAssignmentProblem); }
40    }
41
42    [Storable]
43    private QuadraticAssignmentProblem problem;
44    public IProblem Problem {
45      get { return problem; }
46      set { problem = (QuadraticAssignmentProblem)value; }
47    }
48
49    public ILookupParameter<IntValue> LocalIterationsParameter {
50      get { return (ILookupParameter<IntValue>)Parameters["LocalIterations"]; }
51    }
52
53    public ILookupParameter<IRandom> RandomParameter {
54      get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
55    }
56
57    public IValueLookupParameter<IntValue> MaximumIterationsParameter {
58      get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
59    }
60
61    public ILookupParameter<IntValue> EvaluatedSolutionsParameter {
62      get { return (ILookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
63    }
64
65    public ILookupParameter<ResultCollection> ResultsParameter {
66      get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
67    }
68
69    public ILookupParameter<Permutation> AssignmentParameter {
70      get { return (ILookupParameter<Permutation>)Parameters["Assignment"]; }
71    }
72
73    public ILookupParameter<DoubleValue> QualityParameter {
74      get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
75    }
76
77    public ILookupParameter<BoolValue> MaximizationParameter {
78      get { return (ILookupParameter<BoolValue>)Parameters["Maximization"]; }
79    }
80
81    public ILookupParameter<DoubleMatrix> WeightsParameter {
82      get { return (ILookupParameter<DoubleMatrix>)Parameters["Weights"]; }
83    }
84
85    public ILookupParameter<DoubleMatrix> DistancesParameter {
86      get { return (ILookupParameter<DoubleMatrix>)Parameters["Distances"]; }
87    }
88
89    public IValueLookupParameter<IntValue> NeighborhoodSizeParameter {
90      get { return (IValueLookupParameter<IntValue>)Parameters["NeighborhoodSize"]; }
91    }
92
93    [StorableConstructor]
94    protected QAPStochasticScrambleLocalImprovement(bool deserializing) : base(deserializing) { }
95    protected QAPStochasticScrambleLocalImprovement(QAPStochasticScrambleLocalImprovement original, Cloner cloner)
96      : base(original, cloner) {
97      this.problem = cloner.Clone(original.problem);
98    }
99    public QAPStochasticScrambleLocalImprovement()
100      : base() {
101      Parameters.Add(new LookupParameter<IntValue>("LocalIterations", "The number of iterations that have already been performed."));
102      Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator to use."));
103      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum amount of iterations that should be performed (note that this operator will abort earlier when a local optimum is reached).", new IntValue(10000)));
104      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The amount of evaluated solutions (here a move is counted only as 4/n evaluated solutions with n being the length of the permutation)."));
105      Parameters.Add(new LookupParameter<ResultCollection>("Results", "The collection where to store results."));
106      Parameters.Add(new LookupParameter<Permutation>("Assignment", "The permutation that is to be locally optimized."));
107      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality value of the assignment."));
108      Parameters.Add(new LookupParameter<BoolValue>("Maximization", "True if the problem should be maximized or minimized."));
109      Parameters.Add(new LookupParameter<DoubleMatrix>("Weights", "The weights matrix."));
110      Parameters.Add(new LookupParameter<DoubleMatrix>("Distances", "The distances matrix."));
111      Parameters.Add(new ValueLookupParameter<IntValue>("NeighborhoodSize", "The number of moves to sample from the neighborhood.", new IntValue(100)));
112    }
113
114    public override IDeepCloneable Clone(Cloner cloner) {
115      return new QAPStochasticScrambleLocalImprovement(this, cloner);
116    }
117
118    public static void Improve(IRandom random, Permutation assignment, DoubleMatrix weights, DoubleMatrix distances, DoubleValue quality, IntValue localIterations, IntValue evaluatedSolutions, bool maximization, int maxIterations, int neighborhoodSize, CancellationToken cancellation) {
119      for (int i = localIterations.Value; i < maxIterations; i++) {
120        ScrambleMove bestMove = null;
121        double bestQuality = 0; // we have to make an improvement, so 0 is the baseline
122        double evaluations = 0.0;
123        for (int j = 0; j < neighborhoodSize; j++) {
124          var move = StochasticScrambleMultiMoveGenerator.GenerateRandomMove(assignment, random);
125          double moveQuality = QAPScrambleMoveEvaluator.Apply(assignment, move, weights, distances);
126          evaluations += 2.0 * move.ScrambledIndices.Length / assignment.Length;
127          if (maximization && moveQuality > bestQuality
128            || !maximization && moveQuality < bestQuality) {
129            bestQuality = moveQuality;
130            bestMove = move;
131          }
132        }
133        evaluatedSolutions.Value = (int)Math.Ceiling(evaluations);
134        if (bestMove == null) break;
135        ScrambleManipulator.Apply(assignment, bestMove.StartIndex, bestMove.ScrambledIndices);
136        quality.Value += bestQuality;
137        localIterations.Value++;
138        cancellation.ThrowIfCancellationRequested();
139      }
140    }
141
142    public override IOperation Apply() {
143      var random = RandomParameter.ActualValue;
144      var maxIterations = MaximumIterationsParameter.ActualValue.Value;
145      var neighborhoodSize = NeighborhoodSizeParameter.ActualValue.Value;
146      var assignment = AssignmentParameter.ActualValue;
147      var maximization = MaximizationParameter.ActualValue.Value;
148      var weights = WeightsParameter.ActualValue;
149      var distances = DistancesParameter.ActualValue;
150      var quality = QualityParameter.ActualValue;
151      var localIterations = LocalIterationsParameter.ActualValue;
152      var evaluations = EvaluatedSolutionsParameter.ActualValue;
153      if (localIterations == null) {
154        localIterations = new IntValue(0);
155        LocalIterationsParameter.ActualValue = localIterations;
156      }
157
158      Improve(random, assignment, weights, distances, quality, localIterations, evaluations, maximization, maxIterations, neighborhoodSize, CancellationToken);
159
160      localIterations.Value = 0;
161      return base.Apply();
162    }
163  }
164}
Note: See TracBrowser for help on using the repository browser.